| [1]S.Antipov,DD. Hudson,A. Fuerbach,et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J].Optica, 2016, 3(12):1373-1376
[2] Wang Z, Zhang B, Liu J, et al. Recent developments in mid-infrared fiber lasers: Status and challenges[J]. Optics & Laser Technology, 2020, 132: 106497.
[3] Qin Z, Xie G, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.
[4] Willer U, Saraji M, Khorsandi A, et al. Near-and mid-infrared laser monitoring of industrial processes, environment and security applications[J]. Optics and lasers in engineering, 2006, 44(7): 699-710.
[5] Huang S, Tang S, Wang J, et al. Highly efficient actively Q-switched Er3+-doped ZBLAN fiber laser operating around 2.8 μm using a La3Ga5SiO14 electro-optical modulator[J]. Chinese Optics Letters, 2024, 22(11): 111406.
[6] Zhang Y, Wu K, Guang Z, et al. Advances and challenges of ultrafast fiber lasers in 2-4 μm mid-infrared spectral regions[J]. Laser & Photonics Reviews, 2024, 18(3): 2300786.
[7] 张新,舒世立,佟存柱.3μm波长Er:ZBLAN光纤激光器研究进展[J].光电工程,2019,46(08):16-24.
[8] 叶斌,戴世勋,刘自军,等.2.7μm掺Er3+∶ZBLAN光纤激光器的研究进展[J].激光与光电子学进展,2015,52(09):37-42.
[9] Jobin F, Paradis P, Aydin Y O, et al. Recent developments in lanthanide-doped mid-infrared fluoride fiber lasers[J]. Optics Express, 2022, 30(6): 8615-8640.
[10] Wang B, Cheng L, Zhong H, et al. Excited state absorption cross sections of 4I13/2 of Er3+ in ZBLAN[J]. Optical Materials, 2009, 31(11): 1658-1662.
[11] Faucher D, Bernier M, Androz G, et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(7): 1104-1106.
[12] Zhu X, Jain R. Compact 2 W wavelength-tunable Er: ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383.
[13] Tokita S, Hirokane M, Murakami M, et al. Stable 10 W Er: ZBLAN fiber laser operating at 2.71–2.88 μm[J]. Optics Letters, 2010, 35(23): 3943-3945.
[14] Zhou R T, Huang J, Liu D Y, et al. High-damage-threshold mid-infrared saturable absorber enabled by tantalum carbide nanoparticles[J]. Optics Letters, 2023, 48(15): 4057-4060.
[15] Li J, Yang Y, Hudson D D, et al. A tunable Q-switched Ho3+-doped fluoride fiber laser[J]. Laser Physics Letters, 2013, 10(4): 045107.
[16] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 2016, 41(7): 1676-1679.
[17] Wei C, Zhang H, Shi H, et al. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range[J]. IEEE Photonics Technology Letters, 2017, 29(11): 881-884.
[18] Chen T, Yao W, Uehara H, et al. High-peak-power and wavelength tunable acousto-optic Q-switched Er: ZBLAN fiber laser[J]. Japanese Journal of Applied Physics, 2022, 61(4): 040902.
[19] Shen Y, Wang Y, Luan K, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics B, 2017, 123: 1-6.
[20] Gong H, Wang Y, Luo H. Widely and Continuously Tunable Nanosecond Pulsed Laser Source Around 3 μm[J]. Journal of Lightwave Technology, 2023, 42(1): 354-359.
[21] Faucher D, Bernier M, Caron N, et al. Erbium-doped all-fiber laser at 2.94 μm[J]. Optics Letters, 2009, 34(21): 3313-3315.
[22] Pajewski L, Sójka L, Lamrini S, et al. Experimental investigation of actively Q-switched Dy3+ doped fluoride single mode fiber laser operating near 3 μm[J]. Journal of Lightwave Technology, 2023, 42(2): 809-813. |