量子电子学报 ›› 2025, Vol. 42 ›› Issue (2): 187-195.doi: 10.3969/j.issn.1007-5461.2025.02.004

• 激光技术与器件 • 上一篇    下一篇

基于 Fabry-Perot 标准具的高精度波长实时监测方法研究

林雨晴 1,2, 夏 滑 1*, 张志荣 1,2,3,4,5*, 孙鹏帅 1, 吴 边 1, 李 哲 6, 蔡永军 7   

  1. 1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 光子器件与材料安徽省重点实验室, 安徽 合肥 230031; 2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026; 3 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031; 4 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026; 5 先进激光技术安徽省实验室, 安徽 合肥 230037; 6 合肥师范学院物理与材料工程学院, 安徽 合肥 230601; 7 国家管网集团科学技术研究总院分公司, 河北 廊坊 065000
  • 收稿日期:2023-03-15 修回日期:2023-04-10 出版日期:2025-03-28 发布日期:2025-03-28
  • 通讯作者: huaxia@aiofm.ac.cn; zhangzr@aiofm.ac.cn E-mail:huaxia@aiofm.ac.cn; zhangzr@aiofm.ac.cn
  • 作者简介:林雨晴 ( 1997 - ), 女, 安徽宿州人, 研究生, 主要从事激光吸收光谱方面的研究。E-mail: 776056799@qq.com
  • 基金资助:
    国家重点研发计划 (2022YFB3207601), 安徽省自然科学基金杰青项目 (2408085J001), 国家自然科学基金 (11874364, 41877311, 42005107), 中国科学院合肥研究院 "火花" 基金 (YZJJ2022QN02)

Investigation of high‑precision real time wavelength monitoring method based on Fabry‑Perot etalon

LIN Yuqing 1,2 , XIA Hua 1*, ZHANG Zhirong 1,2,3,4,5*, SUN Pengshuai 1 , WU Bian 1 , LI Zhe 6 , CAI Yongjun   

  1. 1 Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China; 3 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 4 College of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; 5 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China; 6 College of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China; 7 Pipe China Institute Academy of Science & Technology, Langfang 065000, China
  • Received:2023-03-15 Revised:2023-04-10 Published:2025-03-28 Online:2025-03-28

摘要: 在采用腔衰荡、腔增强等高精度激光吸收光谱技术进行气体测量时, 激光器输出波长的稳定性直接关系到 测量的准确度。因此, 准确测定激光器波长对高灵敏激光吸收光谱技术具有至关重要的作用。本文以腔衰荡吸收 光谱中常采用的分布式反馈 (DFB) 激光器为例, 搭建了一种基于法布里-珀罗 (Fabry-Perot, F-P) 标准具的波长监测 系统。该系统利用F-P标准具产生干涉事件, 调节激光器驱动电流进行波长扫描, 同时启用参考波长计, 得到波长 和干涉光强的函数关系, 在后续测量中通过此函数关系反演波长信息。实验中采用中心波长为1653 nm的DFB激 光器, F-P系统对其实现了1653.66160 nm至1653.77718 nm波段内的波长测量。对系统的测量结果与参考波长计的 读数进行线性拟合, 二者拟合度为0.9999, 证明F-P波长监测系统的可靠性。为进一步验证系统的稳定性和测量精 度, 在激光器中心波长处进行了10 min的连续监测, 结果表明, 系统精度为 ± 9.12 × 10−5 nm。本工作的开展对后续 采用腔衰荡吸收光谱技术实现高精度大气背景及同位素气体测量具有积极的意义。

关键词: 激光技术, 激光吸收光谱, 法布里-珀罗标准具, 波长监测, 干涉光强, 腔衰荡吸收光谱

Abstract: When high-precision laser absorption spectroscopy techniques such as cavity ring-down spectroscopy and cavity enhanced spectroscopy are used in gas measurements, the stability of laser output wavelength directly affects the accuracy of measurement results. Therefore, accurate measurement of laser wavelength is crucial to high-sensitivity laser absorption spectroscopy technology. Taking the distributed feedback (DFB) laser commonly used in the cavity ring-down absorption spectrum as an application example, a wavelength monitoring system is built in this work based on Fabry-Perot (F-P) etalon. The system utilizes the interference phenomenon of F-P etalon, and adjusts the laser driving current to scan the wavelength. And at the same time, a standared wavelength meter is used as reference, then the functional relationship between wavelength and interference light intensity can be obtained, which will be used for inversion of wavelength information in the subsequent measurement. In the experiment, a DFB laser with central wavelength of 1653 nm is used, and the F-P system has realized the wavelength measurement in the range of 1653.66160 nm to 1653.77718 nm for this laser. The linear fitting correlation between the measurement results and the reading of the reference wavelength meter is 0.9999, which proves the reliability of the F-P wavelength monitoring system. In order to further verify the stability and measurement accuracy of the system, a 10-minute continuous monitoring is carried out at the central wavelength of the laser, and the results show that the system accuracy is ± 9.12 × 10−5 nm. It is indicated that this work is of great significance for realizing high-precision atmospheric background and isotope gas measurement by cavity ring-down absorption spectroscopy technology in the future.

Key words: laser techniques, laser absorption spectroscopy, Fabry-Perot etalon, wavelength monitoring, interference light intensity, cavity ring-down absorption spectroscopy

中图分类号: