量子电子学报 ›› 2024, Vol. 41 ›› Issue (3): 399-420.doi: 10.3969/j.issn.1007-5461.2024.03.001
蒲磊 1, 邱岩 1, 卢博文 1, 朱斌 2, 梅金娜 2, 蔡振 2, 吴坚 3, 李兴文 3, 李永东 1, 杭玉桦 2*
收稿日期:
2023-12-01
修回日期:
2024-01-24
出版日期:
2024-05-28
发布日期:
2024-05-28
通讯作者:
E-mail: hangyuhua@cgnpc.com.cn
E-mail:E-mail: hangyuhua@cgnpc.com.cn
作者简介:
蒲 磊 ( 1997 - ), 研究生, 主要从事激光诱导击穿光谱方面的研究。E-mail: pulei@stu.xjtu.edn.cn
基金资助:
PU Lei 1, QIU Yan 1, LU Bowen 1, ZHU Bin 2, MEI Jinna 2, CAI Zhen 2, WU Jian 3, LI Xingwen 3, LI Yongdong 1, HANG Yuhua 2*
Received:
2023-12-01
Revised:
2024-01-24
Published:
2024-05-28
Online:
2024-05-28
摘要: 作为一种新型物质探测技术, 激光诱导击穿光谱 (LIBS) 技术因具有制样简单、非接触式测量、现场适应能力强、分析速度快以及能同时对多种元素进行识别和定量分析等突出优点, 近年来在工厂运维、垃圾回收、岩矿分 析、文化遗产保护、环境监测、生物医疗、食品检验、国土安全等诸多领域得到广泛应用。在从实验室逐步走向实际应 用的过程中, 各国研究人员开发了各式LIBS仪器, 根据其大小和使用特点, 大致可分为台式、远程式和便携式三类。 本研究对激光诱导击穿光谱的原理、系统构成和发展脉络作了系统性的介绍, 对现有的LIBS仪器进行了分类与综 述, 细致探讨了各类设备的优势及面临的挑战, 并对未来的发展方向进行了展望。
中图分类号:
蒲磊, 邱岩, 卢博文, 朱斌, 梅金娜, 蔡振, 吴坚, 李兴文, 李永东, 杭玉桦 . 激光诱导击穿光谱仪器化研制综述 (封面文章)[J]. 量子电子学报, 2024, 41(3): 399-420.
PU Lei , QIU Yan , LU Bowen , ZHU Bin , MEI Jinna , CAI Zhen , WU Jian , LI Xingwen , LI Yongdong , HANG Yuhua . Review of instrumentation development of laser⁃induced breakdown spectroscopy (Invited, Cover Paper)[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 399-420.
[1] CIUCCI A, CORSI M, PALLESCHI V, et al. New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy[J/OL]. Applied Spectroscopy, 1999, 53(8): 960-964. DOI:10.1366/0003702991947612.[2] ZENG Q, SIRVEN J B, GABRIEL J C P, et al. Laser induced breakdown spectroscopy for plastic analysis[J/OL]. TrAC Trends in Analytical Chemistry, 2021, 140: 116280. DOI:10.1016/j.trac.2021.116280.[3] LIMBECK A, BRUNNBAUER L, LOHNINGER H, et al. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy[J/OL]. Analytica Chimica Acta, 2021, 1147: 72-98. DOI:10.1016/j.aca.2020.12.054.[4] HUBER N, ESCHLB?CK-FUCHS S, SCHERNDL H, et al. In-line measurements of chlorine containing polymers in an industrial waste sorting plant by laser-induced breakdown spectroscopy[J/OL]. Applied Surface Science, 2014, 302: 280-285. DOI:10.1016/j.apsusc.2013.10.070.[5] LEGNAIOLI S, CAMPANELLA B, POGGIALINI F, et al. Industrial applications of laser-induced breakdown spectroscopy: a review[J/OL]. Analytical Methods, 2020, 12(8): 1014-1029. DOI:10.1039/C9AY02728A.[6] 倪明辉, 李燕, 易镇鑫等. 激光诱导击穿光谱(LIBS)在煤质检测中的应用现状[J]. 中国无机分析化学, 2022, 12(04): 80-88.[7] WINEFORDNER J D, GORNUSHKIN I B, CORRELL T, et al. Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star[J/OL]. Journal of Analytical Atomic Spectrometry, 2004, 19(9): 1061. DOI:10.1039/b400355c.[8] RADZIEMSKI L J, CREMERS D A, LOREE T R. Detection of beryllium by laser-induced-breakdown spectroscopy[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1983, 38(1-2): 349-355. DOI:10.1016/0584-8547(83)80133-5.[9] PALLESCHI V. Forty Years of Laser-Induced Breakdown Spectroscopy and Laser and Particle Beams[J/OL]. Laser and Particle Beams, 2023, 2023: 1-9. DOI:10.1155/2023/2502152.[10] YU J, MA Q, MOTTO-ROS V, et al. Generation and expansion of laser-induced plasma as a spectroscopic emission source[J/OL]. Frontiers of Physics, 2012, 7(6): 649-669. DOI:10.1007/s11467-012-0251-2.[11] NOLL R. Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications[M/OL]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012[2023-11-29]. https://link.springer.com/10.1007/978-3-642-20668-9. DOI:10.1007/978-3-642-20668-9.[12] LIU C S, TRIPATHI V K, ELIASSON B. High-Power Laser-Plasma Interaction:[M/OL]. 1 版. Cambridge University Press, 2020[2023-11-29]. https://www.cambridge.org/core/product/identifier/9781108635844/type/book. DOI:10.1017/9781108635844.[13] DELSERIEYS A P. Optical diagnostics of laser plasmas[J].[14] THOMAS J, JOSHI H C. Review On Laser Induced Breakdown spectroscopy: Methodology and Technical Developments[J/OL]. Applied Spectroscopy Reviews, 2023: 1-32. DOI:10.1080/05704928.2023.2187817.[15] TAKAHASHI T, THORNTON B. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 138: 31-42. DOI:10.1016/j.sab.2017.09.010.[16] YU Z, YAO S, JIANG Y, et al. Comparison of the matrix effect in laser induced breakdown spectroscopy analysis of coal particle flow and coal pellets[J/OL]. Journal of Analytical Atomic Spectrometry, 2021, 36(11): 2473-2479. DOI:10.1039/D1JA00223F.[17] Preparation of onboard calibration targets for the ChemCam instruments on the Mars Science Laboratory rover.pdf[Z].[18]郭连波, 牛雪晨, 张猛胜等. 激光诱导击穿光谱技术应用研究进展(特邀)[J]. 光子学报, 2023, 52(03): 67-80.[19] YANG J, KONG L, LIAN G, 等. Surface hardness determination of 3D printed parts using laser-induced breakdown spectroscopy[J/OL]. Applied Optics, 2021, 60(3): 499. DOI:10.1364/AO.409565.[20] HOU J, ZHANG L, YIN W, et al. Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements[J/OL]. Optics Express, 2017, 25(19): 23024. DOI:10.1364/OE.25.023024.[21] LI J, TANG Y, HAO Z, et al. Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption[J/OL]. Journal of Analytical Atomic Spectrometry, 2017, 32(11): 2189-2193. DOI:10.1039/C7JA00199A.[22]Quantification of fluorite mass-content in powdered ores using a Laser-Induced Breakdown Spectroscopy method based on the detection of minor elements and CaF molecular bands [Z].[23] SENESI G S, CAMPANELLA B, GRIFONI E, et al. Elemental and mineralogical imaging of a weathered limestone rock by double-pulse micro-Laser-Induced Breakdown Spectroscopy[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 143: 91-97. DOI:10.1016/j.sab.2018.02.018.[24] V?LKER T, MILLAR S, STRANGFELD C, et al. Identification of type of cement through laser-induced breakdown spectroscopy[J/OL]. Construction and Building Materials, 2020, 258: 120345. DOI:10.1016/j.conbuildmat.2020.120345.[25] ZHANG Z, WU J, HANG Y, et al. Quantitative analysis of chlorine in cement pastes based on collinear dual-pulse laser-induced breakdown spectroscopy[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 191: 106392. DOI:10.1016/j.sab.2022.106392.[26] RICHIERO S, SANDOVAL C, OBERLIN C, et al. Archaeological Mortar Characterization Using Laser-Induced Breakdown Spectroscopy (LIBS) Imaging Microscopy[J/OL]. Applied Spectroscopy, 2022, 76(8): 978-987. DOI:10.1177/00037028211071141.[27] BOTTO A, CAMPANELLA B, LEGNAIOLI S, et al. Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review[J/OL]. Journal of Analytical Atomic Spectrometry, 2019, 34(1): 81-103. DOI:10.1039/C8JA00319J.[28] PALOMAR T, OUJJA M, GARCíA-HERAS M, et al. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 87: 114-120. DOI:10.1016/j.sab.2013.05.004.[29] CERRATO R, CASAL A, MATEO M P, et al. Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 130: 1-6. DOI:10.1016/j.sab.2016.11.006.[30] YIN Y, SUN D, YU Z, et al. Influence of particle size distribution of pigments on depth profiling of murals using laser-induced breakdown spectroscopy[J/OL]. Journal of Cultural Heritage, 2021, 47: 109-116. DOI:10.1016/j.culher.2020.10.006.[31] YIN Y, YU Z, SUN D, et al. In Situ Study of Cave 98 Murals on Dunhuang Grottoes Using Portable Laser-Induced Breakdown Spectroscopy[J/OL]. Frontiers in Physics, 2022, 10: 847036. DOI:10.3389/fphy.2022.847036.[32] JANTZI S C, MOTTO-ROS V, TRICHARD F, 等. Sample treatment and preparation for laser-induced breakdown spectroscopy[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 115: 52-63. DOI:10.1016/j.sab.2015.11.002.[33]林梵宇, 尹希杰, 刘建鑫等. 原位高分辨微区元素分布特征检测技术的应用进展[J]. 分析测试技术与仪器, 2023, 29(03): 245-260.[34] JULL H, KüNNEMEYER R, SCHAARE P. Nutrient quantification in fresh and dried mixtures of ryegrass and clover leaves using laser-induced breakdown spectroscopy[J/OL]. Precision Agriculture, 2018, 19(5): 823-839. DOI:10.1007/s11119-018-9559-4.[35] LIN Q, WANG S, DUAN Y, et al. Ex vivo three‐dimensional elemental imaging of mouse brain tissue block by laser‐induced breakdown spectroscopy[J/OL]. Journal of Biophotonics, 2021, 14(5): e202000479. DOI:10.1002/jbio.202000479.[36] CHERNI I, NAKKACH M, GHALILA H, et al. Noninvasive diagnosis of type 2 diabetes mellitus by hair analysis using laser-induced breakdown spectroscopy (LIBS)[J/OL]. Instrumentation Science & Technology, 2023, 51(1): 16-31. DOI:10.1080/10739149.2022.2080705.[37] JIANG T J, GUO Z, MA M J, et al. Electrochemical laser induced breakdown spectroscopy for enhanced detection of Cd(II) without interference in rice on layer-by-layer assembly of graphene oxides[J/OL]. Electrochimica Acta, 2016, 216: 188-195. DOI:10.1016/j.electacta.2016.09.016.[38] SHAMEEM K M M, CHOUDHARI K S, BANKAPUR A, et al. A hybrid LIBS–Raman system combined with chemometrics: an efficient tool for plastic identification and sorting[J/OL]. Analytical and Bioanalytical Chemistry, 2017, 409(13): 3299-3308. DOI:10.1007/s00216-017-0268-z.[39] LAZIC V, VADRUCCI M, FANTONI R, et al. Applications of laser-induced breakdown spectroscopy for cultural heritage: A comparison with X-ray Fluorescence and Particle Induced X-ray Emission techniques[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 149: 1-14. DOI:10.1016/j.sab.2018.07.012.[40] PAGNIN L, BRUNNBAUER L, WIESINGER R, et al. Multivariate analysis and laser-induced breakdown spectroscopy (LIBS): a new approach for the spatially resolved classification of modern art materials[J/OL]. Analytical and Bioanalytical Chemistry, 2020, 412(13): 3187-3198. DOI:10.1007/s00216-020-02574-z.[41] DONG M, WEI L, LU J, et al. A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS[J/OL]. Journal of Analytical Atomic Spectrometry, 2019, 34(3): 480-488. DOI:10.1039/C8JA00414E.[42] MARTINEZ M, BAYNE C, AIELLO D, et al. Multi-elemental matrix-matched calcium hydroxyapatite reference materials for laser ablation: Evaluation on teeth by laser-induced breakdown spectroscopy[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 159: 105650. DOI:10.1016/j.sab.2019.105650.[43] ZHANG Y, DONG M, CAI J, et al. Study on the evaluation of the aging grade for industrial heat-resistant steel by laser-induced breakdown spectroscopy[J/OL]. Journal of Analytical Atomic Spectrometry, 2022, 37(1): 139-147. DOI:10.1039/D1JA00331C.[44] KUZMANOVIC M, STANCALIE A, MILOVANOVIC D, et al. Analysis of lead-based archaeological pottery glazes by laser induced breakdown spectroscopy[J/OL]. Optics & Laser Technology, 2021, 134: 106599. DOI:10.1016/j.optlastec.2020.106599.[45] AKHTYRCHENKO Y V, BELYAEV E B, VYSOTSKII Y P, et al. NONLINEAR POWER ATTENUATION OF THE RADIATION OF A PULSED C02 LASER IN THE ATMOSPHERE NEAR THE GROUND[J].[46] SATHIESH KUMAR V, VASA N J, SARATHI R. Remote surface pollutant measurement by adopting a variable stand-off distance based laser induced spectroscopy technique[J/OL]. Journal of Physics D: Applied Physics, 2015, 48(43): 435504. DOI:10.1088/0022-3727/48/43/435504.[47] SALLé B, MAUCHIEN P, MAURICE S. Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(8): 739-768. DOI:10.1016/j.sab.2007.07.001.[48] GAONA I, LUCENA P, MOROS J, et al. Evaluating the use of standoff LIBS in architectural heritage: surveying the Cathedral of Málaga[J/OL]. Journal of Analytical Atomic Spectrometry, 2013, 28(6): 810. DOI:10.1039/c3ja50069a.[49] HARILAL S S, BRUMFIELD B E, PHILLIPS M C. Standoff analysis of laser-produced plasmas using laser-induced fluorescence[J/OL]. Optics Letters, 2018, 43(5): 1055. DOI:10.1364/OL.43.001055.[50] JUNJURI R, PRAKASH GUMMADI A, KUMAR GUNDAWAR M. Single-shot compact spectrometer based standoff LIBS configuration for explosive detection using artificial neural networks[J/OL]. Optik, 2020, 204: 163946. DOI:10.1016/j.ijleo.2019.163946.[51] GONG Y, CHOI D, HAN B Y, et al. Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy[J/OL]. Journal of Nuclear Materials, 2014, 453(1-3): 8-15. DOI:10.1016/j.jnucmat.2014.06.022.[52] BARNETT P D, LAMSAL N, ANGEL S M. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics[J/OL]. Applied Spectroscopy, 2017, 71(4): 583-590. DOI:10.1177/0003702816687569.[53] GAONA I, SERRANO J, MOROS J, et al. Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 96: 12-20. DOI:10.1016/j.sab.2014.04.003.[54] 张大成, 冯中琦, 魏宽等. 远程激光诱导击穿光谱技术与应用(特邀)[J].光子学报, 2021, 50(10): 153-165.[55] GAONA I, SERRANO J, MOROS J, et al. Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 96: 12-20. DOI:10.1016/j.sab.2014.04.003.[56] LASERNA J, LUCENA P, FERRERO A, et al. Standoff LIBS Sensor Technology. Fieldable, Remotely[J].[57] JUNJURI R, PRAKASH GUMMADI A, KUMAR GUNDAWAR M. Single-shot compact spectrometer based standoff LIBS configuration for explosive detection using artificial neural networks[J/OL]. Optik, 2020, 204: 163946. DOI:10.1016/j.ijleo.2019.163946.[58] LIU C, LING Z, ZHANG J, et al. A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System Applicable for Martian Rocks Studies[J/OL]. Remote Sensing, 2021, 13(23): 4773. DOI:10.3390/rs13234773.[59] VINOD P, BABU M S, SARATHI R, et al. Influence of Standoff Distance and Sunlight on Detection of Pollution Deposits on Silicone Rubber Insulators Adopting Remote LIBS Analysis[J/OL]. IEEE Transactions on Industry Applications, 2022, 58(3): 3285-3293. DOI:10.1109/TIA.2022.3159771.[60] DURAND M, HOUARD A, PRADE B, et al. Kilometer range filamentation[J/OL]. Optics Express, 2013, 21(22): 26836. DOI:10.1364/OE.21.026836.[61] SHAIK A K, SOMA V R. Standoff discrimination and trace detection of explosive molecules using femtosecond filament induced breakdown spectroscopy combined with silver nanoparticles[J/OL]. OSA Continuum, 2019, 2(3): 554. DOI:10.1364/OSAC.2.000554.[62] BURGER M, POLYNKIN P, JOVANOVIC I. Filament-induced breakdown spectroscopy with structured beams[J/OL]. Optics Express, 2020, 28(24): 36812. DOI:10.1364/OE.412480.[63] KAUTZ E J, PHILLIPS M C, HARILAL S S. Laser-induced fluorescence of filament-produced plasmas[J/OL]. Journal of Applied Physics, 2021, 130(20): 203302. DOI:10.1063/5.0065240.[64] DAVIES C M, TELLE H H, MONTGOMERY D J, et al. Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS)[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1995, 50(9): 1059-1075. DOI:10.1016/0584-8547(95)01314-5.[65] GRUBER J, HEITZ J, STRASSER H, et al. Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy ?[J]. Atomic Spectroscopy, 2001.[66] ZENG Q, CHEN G, CHEN X, et al. Rapid online analysis of trace elements in steel using a mobile fiber-optic laser-induced breakdown spectroscopy system[J/OL]. Plasma Science and Technology, 2020, 22(7): 074013. DOI:10.1088/2058-6272/ab8a0b.[67] NOHARET B, STERNER C, IREBO T, et al. A compact LIBS system for industrial applications[C/OL]//SOSKIND Y G, OLSON C. SPIE OPTO. San Francisco, California, United States, 2015: 936904[2023-11-29]. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2075336. DOI:10.1117/12.2075336.[68] ZENG QING-DONG, ZHU ZHI-HENG , DENG FAN , et al. Quantitative Analyses of Element Mn in Iron Using Portable Laser-induced Breakdown Spectroscopy with Algorithm of Background Removal Based on Wavelet Transform[J/OL]. ACTA PHOTONICA SINICA, 2018, 47(8): 847014. DOI:10.3788/gzxb20184708.0847014.[69] CHEN F, LU W, CHU Y, et al. High accuracy analysis of fiber-optic laser-induced breakdown spectroscopy by using multivariate regression analytical methods[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 180: 106160. DOI:10.1016/j.sab.2021.106160.[70] A?review?of?the?development?of?portable?laser?induced?breakdown spectroscopy?and?its?applications.pdf[Z].[71] SENESI G S, HARMON R S, HARK R R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 175: 106013. DOI:10.1016/j.sab.2020.106013.[72] QING-DONG Z, MENG-TIAN Y, ZHI-HENG Z, et al. Research progress on portable laser-induced breakdown spectroscopy[J/OL]. Chinese Optics, 2021, 14(3): 470-486. DOI:10.37188/CO.2020-0093.[73] YAMAMOTO K Y, CREMERS D A, FERRIS M J, et al. Detection of Metals in the Environment Using a Portable Laser-Induced Breakdown Spectroscopy Instrument[J/OL]. Applied Spectroscopy, 1996, 50(2): 222-233. DOI:10.1366/0003702963906519.[74] FOUCAUD Y, FABRE C, DEMEUSY B, et al. Optimisation of fast quantification of fluorine content using handheld laser induced breakdown spectroscopy[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 158: 105628. DOI:10.1016/j.sab.2019.05.017.[75]闫久江, 李祥友.新型便携式激光诱导击穿光谱仪器及其应用研究[J].冶金分析, 2020, 40(12): 66-71.[76] ZHAO C, DONG D, DU X, et al. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy[J/OL]. Sensors, 2016, 16(10): 1764. DOI:10.3390/s16101764.[77] CREMERS D A, BEDDINGFIELD A, SMITHWICK R, 等. Monitoring Uranium, Hydrogen, and Lithium and Their Isotopes Using a Compact Laser-Induced Breakdown Spectroscopy (LIBS) Probe and High-Resolution Spectrometer[J/OL]. Applied Spectroscopy, 2012, 66(3): 250-261. DOI:10.1366/11-06314.[78] 胡志裕, 张雷, 尹王保等.激光诱导击穿光谱技术在燃煤电厂及土壤污染物在线检测中的应用研究[J].大气与环境光学学报, 2013, 8(01): 26-35.[79] YAN J, YANG P, ZHOU R, et al. Classification accuracy improvement by data preprocessing in handheld laser-induced breakdown spectroscopy[J/OL]. Analytical Methods, 2019, 11(40): 5177-5184. DOI:10.1039/C9AY01524H.[80] PéREZ-DIEZ S, FERNáNDEZ-MENéNDEZ L J, VENERANDA M, et al. Chemometrics and elemental mapping by portable LIBS to identify the impact of volcanogenic and non-volcanogenic degradation sources on the mural paintings of Pompeii[J/OL]. Analytica Chimica Acta, 2021, 1168: 338565. DOI:10.1016/j.aca.2021.338565.[81] SCHLATTER N, LOTTERMOSER B G, ILLGNER S, et al. Utilising Portable Laser-Induced Breakdown Spectroscopy for Quantitative Inorganic Water Testing[J/OL]. Chemosensors, 2023, 11(9): 479. DOI:10.3390/chemosensors11090479.[82] SINGH J P, ALMIRALL J R, SABSABI M, et al. Laser-induced breakdown spectroscopy (LIBS)[J/OL]. Analytical and Bioanalytical Chemistry, 2011, 400(10): 3191-3192. DOI:10.1007/s00216-011-5073-5.[83] D’AMICO S, VENUTI V. Handbook of Cultural Heritage Analysis[M/OL]. Cham: Springer International Publishing, 2022[2023-11-29]. https://link.springer.com/10.1007/978-3-030-60016-7. DOI:10.1007/978-3-030-60016-7.[84] 汪倩, 邱岩, 吴坚等. 光纤式激光诱导击穿光谱实验平台开发[J]. 实验室研究与探索, 2023, 42(07): 68-71.[85] 吕启深, 邱岩, 唐峰等. 采用光纤传输激光的激光诱导击穿光谱系统参数[J]. 高电压技术, 2020, 46(09): 3301-3310. |
[1] | 符小清, 王静鸽, 代 博, 梁方圆, 刘佳鑫. 基于柱面聚焦透镜的激光诱导击穿光谱特性研究[J]. 量子电子学报, 2024, 41(4): 578-586. |
[2] | 张兴龙, 张启航, 刘玉柱, . 锌的激光诱导击穿光谱与等离子体温度研究[J]. 量子电子学报, 2024, 41(4): 587-594. |
[3] | 左凌云, 师浩森, 姚 远, 蒋燕义, 马龙生. 面向 TDI 技术地面验证的激光干涉仪本底噪声分析[J]. 量子电子学报, 2024, 41(4): 649-658. |
[4] | 杨先茂 , 喻子彧 , 马维喆 , 覃淮青 , 杨淇 , 李承峻 , 谭淑雯 , 冯思捷 , 姚顺春 , . LIBS测量飞灰含碳量的研究现状及展望[J]. 量子电子学报, 2024, 41(3): 421-436. |
[5] | 王金梅 , 刘旭峰 , 郑培超 , 陈光辉 , 刘少剑 , 李刚 , 杨志 , 孙志诚 . 紧凑型激光诱导击穿光谱仪的研制[J]. 量子电子学报, 2024, 41(3): 437-445. |
[6] | 燕群 , 李守杰 , 卢渊 , 田野 , 翟灿旭 , 郭金家 , 叶旺全 , 郑荣儿. 基于彩色相机RGB通道的LIBS等离子体 图像采集与分析[J]. 量子电子学报, 2024, 41(3): 446-454. |
[7] | 胡桢麟 #, 王天泽 #, 郭连波 , 林楠 . 基于萨哈-玻尔兹曼图与自吸收校正的单点修正激光诱导击穿光谱[J]. 量子电子学报, 2024, 41(3): 455-462. |
[8] | 吴敏浩 , 陈靖 , 郑子宇 , 李宣佑 , 王 爽 , 丁 宇 , . 基于迁移成分分析的火星LIBS光谱数据定量分析方法[J]. 量子电子学报, 2024, 41(3): 463-472. |
[9] | 苏鸣宇, 辛艳青, 刘长卿, 凌宗成, . SuperCam-LIBS光谱定量分析火星锰元素[J]. 量子电子学报, 2024, 41(3): 473-484. |
[10] | 徐智帅 , 肖钇豪 , 刘莉 , 郝中骐 , . 基于LIBS与多元线性定标的稀土元素检测研究[J]. 量子电子学报, 2024, 41(3): 496-505. |
[11] | 杨新艳 , 王鑫 , 李东东 , 王玺 , 祝鹏 , 刘昌 , 张徐 , 任红梅 , 秦正波 , 华泽丰 , 郑贤锋 , . 基于激光诱导击穿光谱技术的 水中氮元素检测[J]. 量子电子学报, 2024, 41(3): 506-513. |
[12] | 常佳伟 , 王亚锐 , 马鑫荣 , 韩伟伟 , 张国鼎 , 陆泉芳 , 孙对兄 . 基于LIBS-GD联用技术定量检测黄河水中Cu元素[J]. 量子电子学报, 2024, 41(3): 514-521. |
[13] | 杨楠 , 程天乐 , 史广源 , 皮雨欣 , 崔敏超 . TC4钛合金样品硬度对激光诱导等离子体温度的影响研究[J]. 量子电子学报, 2024, 41(3): 522-532. |
[14] | 张奇 , 张占胜 , 陈彤 , 张鹏 , 齐立峰 , 孙兰香 , . 基于SPA-SVR模型的LIBS铁精矿矿浆中铁品位的在线测量[J]. 量子电子学报, 2024, 41(3): 533-542. |
[15] | 王韶仪, 冯中琦, 许文忠, 侯佳佳, 路智勇, 张勇剑, 张大成 . 陶瓷碎片的激光诱导击穿光谱快速鉴别方法[J]. 量子电子学报, 2024, 41(3): 543-552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||