量子电子学报 ›› 2024, Vol. 41 ›› Issue (3): 463-472.doi: 10.3969/j.issn.1007-5461.2024.03.006

• "LIBS 关键技术与应用"专辑 • 上一篇    下一篇

基于迁移成分分析的火星LIBS光谱数据定量分析方法

吴敏浩 1,2,3, 陈靖 1,2,3, 郑子宇 1,2,3, 李宣佑 1,2,3, 王 爽 1,2,3, 丁 宇 1,2,3*   

  1. ( 1 南京信息工程大学江苏省大数据分析技术重点实验室, 江苏 南京 210044; 2 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044; 3 南京信息工程大学江苏省气象能源利用与控制工程技术研究中心, 江苏 南京 210044 )
  • 收稿日期:2023-11-28 修回日期:2024-01-11 出版日期:2024-05-28 发布日期:2024-05-28
  • 通讯作者: E-mail: dingyu@nuist.edu.cn E-mail:E-mail: dingyu@nuist.edu.cn
  • 作者简介:吴敏浩 ( 2003 - ), 浙江衢州人, 主要从事激光诱导击穿光谱方面的研究。E-mail: 202113410016@nuist.edu.cn
  • 基金资助:
    国家自然科学基金 (62105160), 福建省自然科学基金 (2023J05303), 江苏省大型科学仪器开放共享课题 (TC2023A020)

Quantitative analysis method of Mars LIBS spectral data based on transfer component analysis

WU Minhao 1,2,3, CHEN Jing 1,2,3, ZHENG Ziyu 1,2,3, LI Xuanyou 1,2,3,WANG Shuang 1,2,3, DING Yu 1,2,3*   

  1. ( 1 Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 3 Jiangsu Engineering Research Center on Meteorological Energy Using and Control, Nanjing University of Information Science & Technology, Nanjing 210044, China )
  • Received:2023-11-28 Revised:2024-01-11 Published:2024-05-28 Online:2024-05-28

摘要: 火星土壤中的元素成分及其含量是地质演化历史的重要记录载体, 可以反映火星环境、气候等信息, 因此 对火星土壤进行检测和分析具有重要意义。本研究提出了一种迁移成分分析 (TCA) 结合随机森林 (RF) 的LIBS定 量分析方法, 用于预测火星在轨标样的K2 O质量分数。选取了383种标样在模拟火星环境下的光谱数据作为训练 集, 6种在轨标样在真实火星环境下的光谱数据作为测试集。使用训练集建立决策树为250棵的RF模型, 其平均绝 对误差(EMA )、均方根误差(ERMS )和平均相对误差(EMR )分别为1.117、1.148和10.104, 预测性能较差。为了缩短训练 集和测试集光谱数据之间的分布距离, 建立TCA-RF模型并调整参数。相较于RF模型, TCA-RF模型的EMA 、ERMS 和 EMR 分别降低了90.7%、88.1%和94.1%。而与参考模型MOC (一种偏最小二乘法结合独立成分分析的模型) 对比, TCA-RF模型在预测测试集中K2 O质量分数≥0.15%的样品时, 其准确性高于MOC模型。因此TCA-RF模型可以为 探测火星土壤元素含量提供新的技术手段。

关键词: 光谱学, 激光诱导击穿光谱, 火星探测, 迁移成分分析, 定量分析

Abstract: The elemental composition and content in Martian soil are important record carrier of geological evolutionary history, which can reflect the Martian environment, climate, and other information, so it is of great significance to detect and analyze Martian soil. A LIBS quantitative analysis method based on the combination of transfer component analysis (TCA) with random forest (RF) is proposed to predict the K2 O mass fraction of Mars on-orbit standards. The spectral data of 383 standard samples in simulated Martian environment were selected as the training set, and the spectral data of 6 on orbit standard samples in real Martian environment were selected as the test set. The RF model with 250 decision trees was established using the training set, and the mean absolute error (EMA ), the root mean square error (ERMS ) and the mean relative error (EMR ) were 1.117, 1.148 and 10.104, respectively, indicating poor prediction performance. To shorten the distribution distance between the spectral data of the training set and the test set, the TCA-RF model is established and the parameters are adjusted. Compared with the RF model, the EMA ERMS and EMR of the TCA-RF model are reduced by 90.7%, 88.1% and 94.1% respectively. Compared with the reference model MOC, a model based on the partial least squares regression combined with independent component analysis, the TCA-RF model is more accurate than the MOC model in predicting samples with K2 O mass fraction higher than or equal to 0.15% in the test set. Therefore, it is indicated that the TCA-RF model can provide a new technical means for detecting the content of soil elements on Mars.

Key words: spectroscopy, laser-induced breakdown spectroscopy, Mars exploration, transfer component analysis, quantitative analysis

中图分类号: