量子电子学报 ›› 2022, Vol. 39 ›› Issue (4): 662-675.doi: 10.3969/j.issn.1007-5461.2022.04.022

• 纤维与波导光学 • 上一篇    

基于ICPSO-BP 神经网络的光纤 SPR 传感器开环系统优化研究

付丽辉1∗, 戴峻峰2   

  1. ( 1 淮阴工学院自动化学院, 江苏淮安223003; 2 淮阴工学院电子信息工程学院, 江苏淮安223003 )
  • 收稿日期:2021-01-21 修回日期:2021-02-26 出版日期:2022-07-28 发布日期:2022-07-28
  • 通讯作者: E-mail: flh3650326@163.com E-mail:E-mail: flh3650326@163.com
  • 作者简介:付丽辉( 1975 - ), 女, 黑龙江人, 博士, 副教授, 从事模式识别、等离子传感技术等方面的研究。E-mail: flh3650326@163.com
  • 基金资助:
    Supported by Cooperative Education Project of Industry University Cooperation of the Ministry of Education of the People’s Republic of China (国家教育部产学合作协同育人项目, 201902143026), Science and Technology Projects of Jiangsu Construction System (江苏省建设系统科技项 目, 2019ZD001095), 1111 Engineering Cooperation Project of Huai’an City (淮安市“1111”工程合作项目, Z413H22507)

Optimization of open-loop system of optical fiber SPR sensor based on ICPSO-BP neural network

FU Lihui1∗, DAI Junfeng2   

  1. ( 1 Faculty of Automation, Huaiyin Institute of Technology, Huaian 223003, China; 2 Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 223003, China )
  • Received:2021-01-21 Revised:2021-02-26 Published:2022-07-28 Online:2022-07-28

摘要: 表面等离子共振(SPR) 传感器开环系统的弊端, 对全局搜索粒子群算法(PSO) 的早熟收敛问题进行改 进, 提出了一种动态信息调整且速度可控的改进型合作粒子群算法(ICPSO)。该方法通过在粒子飞行状态控制 的迭代方程中引入子群最优信息, 较好地保持了粒子多样性, 有效地避免寻优飞行中粒子的早熟收敛。进一步 将该算法作为BP 神经网络的训练算法, 建立了更为优化的ICPSO-BP 神经网络。最后, 利用ICPSO-BP 神经网 络对光纤SPR 开环系统的内部非线性模型进行辨识补偿, 分别建立单输入、双输入、三输入的ICPSO-BP 神经 网络补偿模型,实验及仿真结果表明新算法在测试线性精度和速度上均具有较好的表现, 从而保证了光纤SPR 良好的线性测试效果, 为光纤SPR 传感器进一步应用打下一定基础。

关键词: 光纤光学, 光纤传感器, 表面等离子共振效应, 粒子群算法, 神经网络, 开环系统

Abstract: Aiming at the disadvantages of optical fiber SPR open-loop system, the premature convergence problem of particle swarm optimization (PSO) with global search is improved, and an improved cooperative particle swarm optimization (ICPSO) algorithm with dynamic information adjustment and controllable speed is proposed. By introducing the optimal information of subgroups into the iterative equation of the flight-state controlling of particle, the particles′ diversity is well maintained, and the prematureconvergence of particles in optimization flight can be effectively avoided for the proposed algorithm. Furthermore, the algorithm is used as the training algorithm of BP neural network, and a more optimized ICPSO-BP neural network is established. Finally, the ICPSO-BP neural network is used to identify and compensate the internal nonlinear model of optical fiber SPR open-loop system, and the compensation models of single-input, double-input and three-input ICPSO-BP neural network are established respectively. The simulation results show that the new algorithm has good performance in speed and accuracy test, thus ensuring the good linearity test effect of SPR, and laying a foundation for the further application of optical fiber SPR sensor.

Key words: fiber optics, optical-fiber sensor, surface plasmon resonance effect, particle swarm optimization; neural network, open-loop system

中图分类号: