Chinese Journal of Quantum Electronics ›› 2023, Vol. 40 ›› Issue (6): 899-916.doi: 10.3969/j.issn.1007-5461.2023.06.010
• Nonlinear Optics • Previous Articles Next Articles
LI Haidong1,2,3 , SHEN Yu1,2*, WEN Ya4 , ZHANG Shenjin1,2*, ZONG Nan1,2 , BO Yong1,2 , PENG Qinjun1,2
Received:
2022-01-04
Revised:
2022-02-23
Published:
2023-11-28
Online:
2023-11-28
CLC Number:
LI Haidong, , SHEN Yu, WEN Ya , ZHANG Shenjin, ZONG Nan, , BO Yong, , PENG Qinjun, . Band calculation and spectral analysis of diamond crystal[J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 899-916.
[1] WILLIAMS R J, NOLD J, STRECKER M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser Photonics Reviews, 2015, 9(4): 405-11.[2] PASHININ V P, RALCHENKO V G, BOLSHAKOV A P, et al. External-cavity diamond Raman laser performance at 1240 nm and 1485 nm wavelengths with high pulse energy [J]. Laser Physics Letters, 2016, 13(6): 065001:1-4.[3] FRIEL I, GEOGHEGAN S L, TWITCHEN D J, et al. Development of high quality single crystal diamond for novel laser applications; proceedings of the Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII, Toulouse, France, F September 20—23,2010, 2010 [C]. International Society for Optics and Photonics, 2010.[4] BALMER R S, BRANDON J R, CLEWES S L, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications [J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364221:1-23.[5] SAVITSKI V G, REILLY S, KEMP A J. Steady-State Raman Gain in Diamond as a Function of Pump Wavelength [J]. IEEE Journal of Quantum Electronics, 2013, 49(2): 218-23.[6] SABELLA A, PIPER J A, MILDREN R P. 1240 nm diamond Raman laser operating near the quantum limit [J]. Optics Letters, 2010, 35(23): 3874-6.[7] MARTINEAU P M, GAUKROGER M P, GUY K B, et al. High crystalline quality single crystal chemical vapour deposition diamond [J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364205:1-8.[8] SABELLA A, PIPER J A, MILDREN R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 mu m [J]. Optics Letters, 2014, 39(13): 4037-40.[9] DEMETRIOU G, KEMP A J, SAVITSKI V. 100 kW peak power external cavity diamond Raman laser at 2.52 mu m [J]. Optics Express, 2019, 27(7): 10296-303.[10] WILLIAMS R J, SPENCE D J, LUX O, et al. High-power continuous-wave Raman frequency conversion from 1.06 mu m to 1.49 mu m in diamond [J]. Optics Express, 2017, 25(2): 749-57.[11] HEINZIG M, WALBAUM T, WILLIAMS R J, et al. High-power single-pass pumped diamond Raman Laser; proceedings of the Conference on Lasers and Electro-Optics Europe / European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, F June 25—29,2017, 2017 [C]. 2017.[12] LIN H Y, HUANG X H, SUN D, et al. Passively Q-switched multi-wavelength Nd:YVO4 self-Raman laser [J]. Journal of Modern Optics, 2016, 63(21): 2235-7.[13] KAMINSKII A A, UEDA K, EICHLER H J, et al. Tetragonal vanadates YVO4 and GdVO4 - new efficient chi((3))-materials for Raman lasers [J]. Optics Communications, 2001, 194(1-3): 201-6.[14] CERNY P, ZVEREV P G, JELINKOVA H, et al. Efficient Raman shifting of picosecond pulses using BaWO4 crystal [J]. Optics Communications, 2000, 177(1-6): 397-404.[15] FINDEISEN J, EICHLER H J, PEUSER P, et al. Diode-pumped Ba(NO3)(2) and NaBrO3 Raman lasers [J]. Applied Physics B, 2000, 70(2): 159-62.[16] MOCHALOV I V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)(2):Nd3+-(KGW:Nd) [J]. Optical Engineering, 1997, 36(6): 1660-9.[17] BASIEV T T, SOBOL A A, ZVEREV P G, et al. Raman spectroscopy of crystals for stimulated Raman scattering [J]. Optical Materials, 1999, 11(4): 307-14.[18] ANTIPOV S, SABELLA A, WILLIAMS R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M-2=15 beam [J]. Optics Letters, 2019, 44(10): 2506-9.[19] SHAO Z H, LI X X, SHEN Y J, et al. Wavelength-tunable diamond Raman laser at similar to 2.5 mu m [J]. Laser Physics Letters, 2021, 18(7): 075001:1-5.[20] DEAN P J, LIGHTOWLERS E C, WIGHT D R. Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond [J]. Physical Review, 1965, 140(1A): A352-68.[21] MEHL M J, PICKETT W E. Zone-center Raman active modes in cubic and hexagonal diamond; proceedings of the Proceedings of the SPIE - The International Society for Optical Engineering, Los Angeles,USA, F January 17-19,1989, 1989 [C]. 1989.[22] KLEIN C A, HARTNETT T M, ROBINSON C J. Critical-point phonon frequencies of diamond [J]. Physical Review B, 1992, 45(22): 12854-63.[23] VOGELGESANG R, ALVARENGA A D, KIM H, et al. Multiphonon Raman and infrared spectra of isotopically controlled diamond [J]. Physical Review B, 1998, 58(9): 5408-16.[24] WU B R, XU J. Total energy calculations of the lattice properties of cubic and hexagonal diamond [J]. Physical Review B, 1998, 57(21): 13355-8.[25] WU B R. Structural and vibrational properties of the 6H diamond: First-principles study [J]. Diamond & Related Materials, 2007, 16(1): 21-8.[26] FU Z J, JI G F, CHEN X R, et al. First-Principle Calculations for Elastic and Thermodynamic Properties of Diamond [J]. Communications in Theoretical Physics, 2009, 51(6): 1129-34.[27] HUANG E P, HUANG E, YU S C, et al. High-temperature and pressure Raman spectroscopy of diamond [J]. Materials Letters, 2010, 64(5): 580-2.[28] GAO S P. Band gaps and dielectric functions of cubic and hexagonal diamond polytypes calculated by many-body perturbation theory [J]. Physica Status Solidi B, 2015, 252(1): 235-42.[29] YUE S Y, QIN G Z, ZHANG X L, et al. Thermal transport in novel carbon allotropes with sp(2) or sp(3) hybridization: An ab initio study [J]. Physical Review B, 2017, 95(8): 085207:1-11.[30] ZHOU J H, LI D H. The phonon transport properties in cubic graphene with entirely sp(2) hybridization state [J]. Physics Letters A, 2021, 404(127410:1-5.[31] KITTEL C. Introduction to Solid State Physics [M]. New York: Wiley, 2005.[32] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864-71.[33] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140(4A): A1133-8.[34] WANG L L, WAN Q, HU W J, et al. First Principle Analysis of Local Density of State and Band Structure of Diamond and Graphite [J]. Computers and Applied Chemistry, 2010, 27(06): 735-8 (in Chinese) 王丽莉,万强,胡文军,等. 金刚石与石墨局域态密度和能带结构的第一原理分析 [J]. 计算机与应用化学,2010,27(06):735-738.[35] SHENG X L, YAN Q B, YE F, et al. T-Carbon: A Novel Carbon Allotrope [J]. Physical Review Letters, 2011, 106(15): 155703:1-4.[36] STRAUMANIS M E, AKA E Z. Precision Determination of Lattice Parameter, Coefficient of Thermal Expansion and Atomic Weight of Carbon in Diamond [J]. Journal of the American Chemical Society, 1951, 73(12): 5643-6.[37] SPEHAR J. Diamonds (atomic structure and properties [J]. IEEE Potentials, 1991, 10(4): 9-12.[38] HUANG K, HAN R Q. Solid State Physics [M]. Beijing: Higher Education Press, 1988, 9-10,15,101-102,242-243,437-440(in chinese)黄昆,韩汝琦. 固体物理 [M]. 北京:高等教育出版社,1988,9-10,15,101-102,242-243,437-440[39] BAI Z X, YANG X Z, CHEN H, et al. Research progress of high-power diamond laser technology [J]. Infrared and Laser Engineering, 2020, 49(12): 20201076:1-13 (in Chinese) 白振旭,杨学宗,陈晖,等. 高功率金刚石激光技术研究进展 [J]. 红外与激光工程,2020,49(12)::1-13.[40] QIN S. Fundamentals of Crystallography [M]. Beijing: Peking University Press, 2004,22-24.(in chinese)秦善. 晶体学基础 [M]. 北京:北京大学出版社,2004,22-24[41] BARNARD A S, RUSSO S P, SNOOK I K. Comparative Hartree-Fock and density-functional theory study of cubic and hexagonal diamond [J]. Philosophical Magazine B, 2002, 82(17): 1767-76.[42] PHILIPP H R, TAFT E A. Optical properties of diamond in the vacuum ultraviolet [J]. Physical Review, 1962, 127(1): 159-61.[43] PHILLIP H R, TAFT E A. Kramers-Kronig analysis of reflectance data for diamond [J]. Physical Review, 1964, 136(5A): A1445-8.[44] ZHAO L, XIE Y Z, CHEN R H, et al. Defect formation energy and band structure analysis of C and N co-doped anatase TiO_2 [J]. Journal of Synthetic Crystals, 2018, 47(12): 2663-8 (in Chinese) 赵林,谢艳招,陈日华,等. C、N共掺锐钛矿TiO_2的缺陷形成能和能带结构分析 [J]. 人工晶体学报, 018,47(12):-8.[45] SALEHPOUR M R, SATPATHY S. Comparison of electron bands of hexagonal and cubic diamond [J]. Physical Review B, 1990, 41(5): 3048-52.[46] LI X Z, GOMEZ ABAL R, JIANG H, et al. Impact of widely used approximations to the G(0)W(0) method: an all-electron perspective [J]. New Journal of Physics, 2012, 14(023006:1-21.[47] BOHR N. On the Constitution of Atoms and Molecules [J]. Philosophical Magazine, 1913, 26(155): 857-75.[48] HUANG Y Y. Atomic Physics Tutorial [M]. Xi'an: Xi'an Jiaotog University Press, 2012,117-122.(in chinese)黄永义. 原子物理学教程 [M]. 西安:西安交通大学出版社,2012,117-122[49] DEPARTMENT OF INORGANIC CHEMISTRY D U T. Inorganic Chemistry [M]. Beijing: Higher Education Press, 2006,244-247.(in chinese)大连理工大学无机化学教研室. 无机化学(第五版) [M]. 北京:高等教育出版社,2006,244-247[50] JONES R, KING T. Calculation of local density of states at defects in diamond and silicon [J]. Physical Review B, 1983, 116(1): 72-5.[51] WARD A, BROIDO D A, STEWART D A, et al. Ab initiotheory of the lattice thermal conductivity in diamond [J]. Physical Review B, 2009, 80(12): 125203:1-8.[52] SPARAVIGNA A. Influence of isotope scattering on the thermal conductivity of diamond [J]. Physical Review B, 2002, 65(6): 064305:1-5.[53] WARREN J L, YARNELL J L, DOLLING G, et al. Lattice dynamics of diamond [J]. Physical Review, 1967, 158(3): 805-8.[54] SHAM L J. Electronic contribution to lattice dynamics in insulating crystals [J]. Physical Review, 1969, 188(3): 1431-9.[55] OCCELLI F, LOUBEYRE P, LETOULLEC R. Properties of diamond under hydrostatic pressures up to 140 GPa [J]. Nature Materials, 2003, 2(3): 151-4.[56] AGER III J W, VEIRS D K, ROSENBLATT G M. Spatially resolved Raman studies of diamond films grown by chemical vapor deposition [J]. Physical Review B, 1991, 43(8): 6491-9.[57] MAEZONO R, MA A, TOWLER M D, et al. Equation of state and raman frequency of diamond from quantum Monte Carlo simulations [J]. Physical Review Letters, 2007, 98(2): 025701:1-4.[58] LAX M, BURSTEIN E. Infrared lattice absorption in ionic and homopolar crystals [J]. Physical Review, 1955, 97(1): 39-52.[59] LI Z, PAN W. First-principles calculation of lattice dynamics and thermal transport properties of CeO_2 [J]. Rare Metal Materials and Engineering, 2020, 49(02): 510-4 (in Chinese) 李正,潘伟. CeO_2的晶格动力学性质和热输运性质的第一性原理计算 [J]. 稀有金属材料与工程,2020,49(02):510-514.[60] SAVITSKI V G, FRIEL I, HASTIE J E, et al. Characterization of Single-Crystal Synthetic Diamond for Multi-Watt Continuous-Wave Raman Lasers [J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 328-37.[61] MILDREN R P. Intrinsic optical properties of diamond [J]. Optical Engineering of Diamond, 2013, 1:1-34.[62] CLARK C D, DEAN P J, HARRIS P V. Intrinsic edge absorption in diamond [J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1964, 277(1370): 312-29.[63] LI Y Q, BAI Z X, CHEN H, et al. Eye-safe diamond Raman laser [J]. Results in Physics, 2020, 16(102863:1-7.[64] BIRMAN J L. Theory of crystal space groups and infra-red and Raman lattice processes of insulating crystals [M]. Theory of crystal space groups and infra-red and Raman lattice processes of insulating crystals. New York; SpringerLink. 1974: 92-5, 272-82. |
[1] | QIAN Longlong, SHEN Yong, LIU Qu, ZOU Hongxin. All-solid-state watt-level 388 nm continuous-wave ultraviolet laser [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 392-399. |
[2] | WANG Zecheng , YANG Zhongming ∗ , ZHANG Xingyu , FAN Shuzhen , CHEN Xiaohan , CONG Zhenhua , LIU Zhaojun , QIN Zengguang , MING Na , GUO Quanxin , GUO Liyuan . Research progress of terahertz parametric sources [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 141-163. |
[3] | XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang ∗. Characteristics of terahertz wave generated from liquids [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 164-180. |
[4] | RUAN Zhiqiang, ZHANG Lei, ZHAO Xinyu, JIANG Xingfang ∗. Analysis of negative dispersion characteristics of a novel circular doped photonic crystal fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 133-138. |
[5] | CHEN Rongquan ∗ , CHEN Yuanfu , WANG Qing , WU Zhigang . Propagation properties of off-axis multi-vortex-Gaussian beams in negative refractive index media [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 795-805. |
[6] | WANG Xinghua, CHEN Rongquan∗, WANG Qing. Complex variable Hermite-Gaussian spatial solitons of different orders in strong nonlocal media [J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 459-466. |
[7] | WANG Ying, LIU Xiaofeng, REN Panpan, LI Shuang, DOU Zhenguo, MEN Zhiwei ∗. Resonance enhanced stimulated Raman scattering of O-H stretching vibration in water molecule [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 774-779. |
[8] | SHEN Xianchun, XU Liang, ∗, SUN Yongfeng, HU Yunyou, JIN Ling, YANG Weifeng, XU Hangyang, LIU Jianguo, LIU Wenqing, . FTIR spectrum recognition algorithm based on variable selection technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 281-289. |
[9] | WANG Xiaoyang∗, LIU Lijuan . KBe2BO3F2 Crystal and All-solid-state Deep Ultraviolet Laser [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 131-147. |
[10] | SHAN Pai, WANG Zujian, SU Rongbing, , HE Chao, YANG Xiaoming, LONG Xifa, . Research progress of quasi-phase matching deep-ultraviolet nonlinear optical crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 180-184. |
[11] | LI Zhuang, LI Chunxiao, YAO Jiyong, ∗, WU Yicheng, . Research progress of BaGa4Se7 and BaGa2GeSe6 crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 185-191. |
[12] | WANG Jinli, ZHONG Chunxiao, REN Ximei, LI Rong. Propagation characteristics of incoherently coupled beams in low loss media [J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 10-16. |
[13] | WANG Hao1,2,QIN Lai-an1,JING Xu1,HE Feng 1,TAN Feng-fu1, HOU Zai-hong1. Research on identification of papaver based on spectral analysis [J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 151-155. |
[14] | Quan Xian-Fu1,2,Zhang Shuo3 and Zhang Jian-Qi1,2*. Ramsey Interferometer based on stimulated Brillouin scattering [J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 206-212. |
[15] | JIN Xu-Jin 1, XU Si-Liu 1*, CHENG Jia-Xi 1, LI Hong 1,LIU Jianxia 1,LUO Hao 2. Spatial optical solitons in space-time modulation photonic crystal lattice [J]. Chinese Journal of Quantum Electronics, 2019, 36(1): 82-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||