[1] IBM Quantum. IBM Quantum computer systems define the future of computing, [OL]. [2021-03-08]. https://www.ibm.com/quantum-computing/.[2] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.[3] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.[4] Wu Y, Bao W S, Cao S, et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Physical review letters, 2021, 127(18): 180501.[5] Preskill J. Quantum Computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79-98.[6] Wille R, Fowler A, Naveh Y. Computer-aided design for quantum computation[C]//Proceedings of IEEE/ACM International Conf. on Computer-Aided Design (ICCAD). San Diego, CA :IEEE, 2018: 1-6.[7] Amy M, Maslov D, Mosca M, et al. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(6): 818-830.[8] Miller D M, Wille R, Sasanian Z. Elementary quantum gate realizations for multiple-control Toffoli gates[C]//Proceedings of of 41st IEEE International Symposium on Multiple-Valued Logic. Tuusula, Finland: IEEE, 2011: 288-293.[9] H?ner T, Steiger D S, Svore K, et al. A software methodology for compiling quantum programs[J]. Quantum Science and Technology, 2018, 3(2): 020501.[10] Cheng XY, Guan ZJ, Xu H, et al. The Nearest Neighbor Arrangement of Quantum Circuits Based on MCT Reversible Circuits[J]. Acta Electronica Sinica, 2018,46(08):1891-1897(in Chinese) .程学云, 管致锦, 徐海, 等. 基于MCT可逆线路的量子线路近邻化排布[J]. 电子学报, 2018, 46(08): 1891-1897.[11] Lu Y, Guan ZJ, Cheng XY, et al. Linear Nearest Neighbor Quantum Circuit Synthesis and Optimization Based on the Matrix[J]. Acta Electronica Sinica, 2018, 46(03): 688-694(in Chinese) .鹿玉, 管致锦, 程学云, 等. 基于矩阵变换的线性最近邻量子线路综合与优化[J]. 电子学报, 2018, 46(03): 688-694.[12] Wille R, Lye A, Drechsler R. Exact Reordering of Circuit Lines for Nearest Neighbor Quantum Architectures [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(12): 1818-1831.[13] Siraichi M Y, Santos V F, Collange S, et al. Qubit allocation[C]//Proceedings of International Symposium on Code Generation and Optimization. New York, NY: ACM, 2018: 113-125.[14] Botea A, Kishimoto A, Marinescu R. On the complexity of quantum circuit compilation[C]//Proceedings of 11th Annual Symposium on Combinatorial Search. Palo Alto, CA :AAAI, 2018: 138–142.[15] Ding J, Yamashita S. Exact Synthesis of Nearest Neighbor Compliant Quantum Circuits in 2-D Architecture and Its Application to Large-Scale Circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 39(5): 1045-1058.[16] Booth K, Do M, Beck J, et al. Comparing and integrating constraint programming and temporal planning for quantum circuit compilation[C]//Proceedings of International Conference on Automated Planning and Scheduling. Delft, Netherlands: TUDelft, 2018, 28(1):366-374.[17] Venturelli D, Do M, Rieffel E G, et al. Temporal Planning for Compilation of Quantum Approximate Optimization Circuits[C]//Proceedings of 26th International Joint Conference on Artificial Intelligence IJCAI. Melbourne, Australia: IJCAI, 2017: 4440-4446.[18] De Almeida A A A, Dueck G W, Da Silva A C R. Finding optimal qubit permutations for IBM's quantum computer architectures[C]//Proceedings of of 32nd Symposium on Integrated Circuits and Systems Design. S?o Paulo, Brazil: IEEE, 2019: 1-6.[19] Wille R, Burgholzer L, Zulehner A. Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and H operations[C]//Proceedings of 56th ACM/IEEE Design Automation Conference. New York, NY: IEEE, 2019: 1-6.[20] Wu B, He X, Yang S, et al. Optimization of CNOT circuits on topological superconducting processors[J]. arXiv:1910.14478, 2019, https://arxiv.org/abs/1910.14478.[21] Nash B, Gheorghiu V, Mosca M. Quantum circuit optimizations for NISQ architectures[J]. Quantum Science and Technology, 2020, 5(2): 025010.[22] Kissinger A, de Griend A M. CNOT circuit extraction for topologically-constrained quantum memories[J]. arXiv:1904.00633, 2019, https://arxiv.org/abs/1904.00633.[23] Zhou X, Li S, Feng Y. Quantum circuit transformation based on simulated annealing and heuristic search[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 4683-4694.[24] Li S, Zhou X, Feng Y. Qubit mapping based on subgraph isomorphism and filtered depth-limited search[J]. IEEE Transactions on Computers, 2020, Early Access, https://ieeexplore.ieee.org/abstract/document/9194320.[25] Zhu P, Guan Z, Cheng X. A dynamic look-ahead heuristic for the qubit mapping problem of NISQ computers[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 4721-4735.[26] Kole A, Hillmich S, Datta K, et al. Improved mapping of quantum circuits to IBM QX architectures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 39(10): 2375-2383.[27] Kole A, Datta K, Sengupta I. A new heuristic for N-dimensional nearest neighbor realization of a quantum circuit[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 37(1): 182-192.[28] Li G, Ding Y, Xie Y. Tackling the qubit mapping problem for NISQ-era quantum devices[C]//Proceedings of the 24TH International Conference on Architectural Support for Programming Languages and Operating Systems. New York, NY: ACM 2019: 1001-1014.[29] Zulehner A, Paler A, Wille R. An efficient methodology for mapping quantum circuits to the IBM QX architectures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 38(7): 1226-1236.[30] Finigan W, Cubeddu M, Lively T, et al. Qubit allocation for noisy intermediate-scale quantum computers[J]. arXiv:1810.08291, 2018, https://arxiv.org/abs/1810.08291.[31] Paler A. On the influence of initial qubit placement during NISQ circuit compilation[C]//Proceedings of International Workshop on Quantum Technology and Optimization Problems. Munich, Germany: Springer, 2019: 207-217.[32] Nishio S, Pan Y, Satoh T, et al. Extracting success from IBM’s 20-qubit machines using error-aware compilation[J]. ACM Journal on Emerging Technologies in Computing Systems, 2020, 16(3): 1-25.[33] Murali P, Baker J M, Javadi-Abhari A, et al. Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers[C]//Proceedings of 24th International Conference on Architectural Support for Programming Languages and Operating Systems. New York, NY: ACM, 2019: 1015-1029.[34] Tan B, Cong J. Optimality study of existing quantum computing layout synthesis tools[J]. IEEE Transactions on Computers, 2020, Early Access, https://ieeexplore.ieee.org/abstract/document/9140293.[35] M. A. Nielsen and I. L. Chuang, Quantum Circuits[M]//Quantum Computation and Quantum Information, 10th ed. New York, NY: Cambridge Univ. Press, 2010:171-215. |