[1] Su X Q, Guo G C. Quantum communication and quantum computation
[J]. Chinese Journal Quantum Electronics ( 量子电子学报 ),2004,21(6):706-716 (in Chinese).
[2] Bennett C H, et al. Communication via one and two-particle operators on Einstein-Podolsky-Rosen states
[J]. Phy. Rev. lett.,1992, 69: 2881-2884.
[3] Mattle K, et al. Dense coding in Experimental Quantum Communication
[J] Phys. Rev. Lett,1996, 76: 4656-4659.
[4] Hausladen P, et al. Classical information capacity of a quantum channel
[J]. Phys. Rev. A, 1996 , 54: 1869-1876.
[5] Hong Z H, Nie Y Y, et al. Controlled quantum teleportation via four particle cluster state
[J]. Chinese Journal Quantum Electronics (量子电子学报),2008,32(4): 458-461 (in Chinese).
[6] Li X Y, et al. Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam
[J]. Phys. Rev. Lett, 2002, 88: 047904.
[7] Fang X M, et al. Experimental implementation of dense coding using nuclear magnetic resonance
[J]. Phys. Rev. A, 2000, 61: 022307.
[8] Ye L, Guo G C. Scheme for implementing quantum dense coding in cavity QED
[J]. Phys. Rev. A, 2005, 71: 034304.
[9] Ye Y, Wee K C. Teleportation and dense coding with genuine multipartite entanglement
[J]. Phys. Rev. Lett, 2006, 96: 060502.
[10] Mozes S, et al. Deterministic dense coding with partially entangled states
[J]. Phys Rev. A, 2005, 71: 012311.
[11] Feng Y, Duan R Y, Ji Z F. Optimal dense coding with arbitrary pure entangled states
[J]. Phys. Rev. A, 2006, 74: 012310.
[12] Hao J C, Li C F, Guo G C. Controlled dense coding using the Greenberger-Horne-Zeilinger state
[J]. Phys. Rev. A, 2001, 63: 054301.
[13] Hausladen P, Jozsa R, et al. Classical information capacity of a quantum channel
[J]. Phys. Rev. A, 1996, 54: 1869-1876.
[14] Hao J C, Li C F, Guo G C. Probabilistic dense coding and teleportation
[J]. Phys. Lett. A, 2000, 278: 113-117.
[15] Ye L, Yu L B. Scheme for implementing quantum dense coding using tripartite entanglement in cavity QED
[J]. Phys. Lett. A, 2005, 346: 330-336.
[16] Pan J W, Zeilinger A. Greenberger-Horne-Zeilinger-state analyzer
[J]. Phys. Rev. A, 1998, 57: 2208-2211.
[17] Zeilinger A, et al. Three-particle entanglements from two entangled pairs
[J]. Phys. Rev. Lett, 1997, 78: 3031-3034.
[18] Sagi Y. Scheme for generating Greenberger-Horne-Zeilinger-type states of n photons
[J]. Phys. Rev. A, 2003, 68: 042320.
[19] Pittman T B, Jacobs B C, Franson J D. Probabilistic quantum logic operations using polarizing beam splitters
[J]. Phys. Rev. A, 2001, 64: 062311.
[20] Nemoto K, Munro W J. Nearly deterministic linear optical controlled-not gate
[J]. Phys. Rev. Lett, 2004, 93: 250502.
[21] Munro W J, et al. High-efficiency quantum-nondemolition single-photon-number-resolving detector
[J]. Phys. Rev. A, 2005, 71: 033819.
[22] Schmidt H, Imamogdlu A. Giant kerr nonlinearities obtained by electromagnetically induced transparency
[J]. Opt. Lett, 1996, 21: 1936-1938.
[23] Harris S E, Hua L V. Nonlinear optics at low light levels
[J]. Phys. Rev. Lett, 1999, 82: 4611-4614.
[24] Kang H, Zhu Y. Observation of large kerr nonlinearity at low light intensities
[J]. Phys. Rev. Lett, 2003, 91: 093601.
[25] Bouwmeester D, Pan J W, et al. Observation of three-photon Greenberger-Home-Zeilinger entanglement
[J]. Phys. Rev. Lett, 1999, 82: 1345-1349.
[26] Pan J W, et al. Experimental test of quantum nonlocality in three-photon Greenberger-Home-Zeilinger entanglement
[J]. Nature (London), 2000, 403: 515-519.
|