[1] Einstein A, Podolsky B, and Rosen N. Can quantumn-mechanical description of physical reality be considered complete? [J]. Phys. Rev., 1935, 47: 777-780.
[2] Bell J S , Physics( Long Island City, N.Y.) 1, 195(1965).
[3] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, and Wootters W K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70: 1895-1899.
[4] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Phys. Rev. Lett., 1991, 67: 661-663.
[5] Bennett C H, and Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett., 1992, 69: 2881-2884.
[6] Zhang S J, MA C, Ye L. Generation of N-qubit cluster states via nonresonant cavity QED and meanwhile driven by a classical field [J]. Chinese Journal of quantum electronics(量子电子学报). 2008,25(3): 328
[7] Tao R, Zheng X H, Cao Z L. A scheme for generating cluster state with Josephson charge qubit [J]. Chinese Journal of quantum electronics(量子电子学报). 2009, 26(5): 570
[8] Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement [J]. Phys. Rev. A., 1998, 58: 4394~4400.
[9] Dür W, Vidal G, and Cirac J I. Three qubits can be entangled in two inequivalent ways [J]. Phys. Rev. A., 2000, 62: 062314.
[10] Guo G C, Zhang Y S. Scheme for preparation of the W state via cavity quantum electrodynamics[J]. Phys. Rev. A., 2002, 65:054302.
[11] Gorbachev V N, et al. Can the states of the W-class be suitable for teleportation? [J]. Phys. Lett. A .,2003, 314: 267-271.
[12] Deng Z J, Feng M, and Gao K L. Simple scheme for generation an n-qubit W state in cavity QED [J]. Phys. Rev. A., 2006, 73: 014302.
[13] Shi B S, Tomita A. Teleportation of an unknown state by W state [J]. Phys.Lett. A., 2002, 296: 161-164.
[14] Agrawal P, Pati A. Perfect teleportation and superdense coding with W states [J]. Phys. Rev. A., 2006, 74: 062320.
[15] Cabrillo C, Cirac J I, Fernandez P G, and Zoller P. Creation of entangled states of distant atoms by interference [J]. Phys. Rev. A., 1999, 59, 1025
[16] Gershenfield N A, Chuang I L [J]. Science 1997, 275, 350
[17] Guo G P, Li C F, Li J, and Guo G C. Scheme for the preparation of multiparticle entanglement in cavity QED [J]. Phys. Rev. A. , 2002, 65, 042102.
[18] Yang C P, Chu S I, and Han Siyuan, Quantum Information Transfer with SQUID Qubits in cavity QED: A Dark-State Scheme with Tolerance for Nonuniform Device Parameter [J]. Phys. Rev. Lett., 2004, 92: 117902.
[19] Kis Z, Paspalakis E. Arbitrary rotation and entanglement of flux SQUID qubits [J]. Phys. Rev. B., 2004, 69: 024510.
[20] Wang X B, Keiji M. Nonadiabatic detection of the geometric phase of the macroscopic quantum state with a symmetric SQUID [J]. Phys. Rev. B., 2002, 65: 172508.
[21] Blais A, Zagoskin A M. Operation of universal gates in a solid-state quantum computer based on clean Josephson junctions between d-wave superconductors [J]. Phys. Rev. A., 2000, 61: 042308.
[22] Yu Y, Han S, Chu X, Chu S-I, and Wang, Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction [J]. Science, 2002, 296, 889.
[23] Chiorescu I, Nakamura Y, Harmans C J P M, and Mooij J E. Coherent Quantum Dynamics of a Superconducting Flux Qubit [J]. Science, 2003, 299, 1869.
[24] Han S, Rouse R, and Lukens J E. Generation of a Population Inversion between Quantum States of a Macroscopic Variable [J]. Phys. Rev. Lett., 1996, 76: 3404-3407.
[25] Chen C Y, Feng M, and Gao K L. Toffoli gate originating from a single resonant interaction with cavity QED [J]. Phys. Rev. A., 2006, 73: 064304.
[26] Zhou Z, Chu S-I, Han S. Quantum computing with superconducting devices: A three-level SQUID qubit [J]. Phys. Rev. B., 2002, 66: 054527. [27] Brune M, Hagley E, Dreyer J, et al. Observing the progressive decoherence of the “Meter” in a quantum measurement [J]. Phys. Rev. Lett., 1996, 77: 4887. |