[1] Saito T, Suzuki T, Yoshino M, et al. . Ultra line-narrowed ArF excimer laser G42A for sub-90-nm lithography [C]. SPIE, 2003, 5040:1704-1711.
[2] Yoshino M, Nakarai H, Ohta T, et al. . High-power and high-energy stability injection lock laser light source for double exposure or double patterning ArF immersion lithography [C]. SPIE, 2008, 6924: p 69242S.
[3] Fleurov V, Rokitski S, Bergstedt R, et al. . XLR 600i: Recirculating ring ArF light source for double patterning immersion lithography [C]. SPIE, 2008, 6924: p 69241R.
[4]International technology roadmap for semiconductors 2007 edition lithography. http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Lithography.pdf
[5] Piscani E C, Ashworth D, Byers J, et al. . Continuing 193nm Optical Lithography for 32nm Imaging and Beyond [C]. SPIE, 2008, 6924: p 692421.
[6] Hazelton A J, Wakamoto S, Hirukawa S, et al. . Double patterning requirements for optical lithography and prospects for optical extension without double patterning [C], SPIE, 2008, 6924: p 69240R.
[7] Miao Xiangqun, Huli L, Chen H, et al. . Double Patterning Combined with Shrink Technique to Extend ArF Lithography for Contact Holes to 22nm Node and Beyond [C]. SPIE, 2008, 6924: p 69240A.
[8] Fleurov V B, Colon III D J, Brown D J W, et al. . Dual-chamber ultra line-narrowed excimer light source for 193 nm lithography [C]. SPIE, 2003, 5040: 1694-1703.
[9] Ishihara T, Besaucele H, Maley C, et al. . Long-term Reliable Operation of a MOPA-based ArF Light Source for Microlithography [C]. SPIE, 2004, 5377: 1858-1865.
[10] Ishihara T, Rafac R, Dunstan W, et al. . XLA-200: the Third-Generation ArF MOPA Light Source for Immersion Lithography [C]. SPIE, 2005, 5754: 773-779.
[11] Trintchouk F, Ishihara T, Gillesoie W, et al. . XLA 300: the Fourth-Generation ArF MOPA Light Source for Immersion Lithography [C]. SPIE, 2006, 6154:P615423.
[12] CYMER INC., An Introduction to Ring Technology, http//www.cymer.com.
[13] Brown D J W, O’keeffe P, Fleurov V B, et al. . XLR 500i: Recirculating ring ArF light source for immersion lithography [C]. SPIE, 2007, 6520: p652020.
[14] GIGAPHOTON INC. Injection-Locking Technology, http://www.gigaphoton.com/e/technology/gigatwin1.html
[15] Mizoguchi H, Inoue T, Fujimoto J, et al. . High Power Injection Lock Laser Platform for ArF Dry/Wet Lithography [C]. SPIE, 2005, 5754: 780-789.
[16] Wakabayashi O, Ariga T, Kumazaki T, et al. . Beam quality of a new-type MOPO laser system for VUV laser lithography [C]. SPIE.2004, 5377: 1772-1780.
[17] Hidenori W, Shigeo K, Satoshi T, et al. . Reliable high power injection locked 6kHz 60W laser for ArF immersion lithography [C]. SPIE.2007, 6520: p652031.
[18] Kumazaki T, Suzaki T, Tanaka S, et al. .Reliable high power injection locked 6 kHz 60W laser for ArF immersion lithography [C]. SPIE, 2008,6924: p69242R.
[19] GIGAPHOTON INC. Challenges in the Injection Locking Method, http://www.gigaphoton.com/e/technology/gigatwin3.html
[20] Hsueh B Y, Wu Hungyi, Jang L, et al. . Effects of Laser Bandwidth on Tool to Tool CD matching [C]. SPIE, 2008,6924: p 69244K.
[21] Huggins K, Tsuyoshi T, Ong M, et al. . “Effect of laser bandwidth on OPE in a modern lithography tool” [C]. SPIE, 2006,6154: p61540Z. [22] O’brien K, Dunstan W J, Riggs D, et al. . Performance demonstration of significant availability improvement in lithography light sources using GLXTM control system [C]. SPIE, 2008, 6954: p 69242Q. |