[1] Qian G., Zhong Z, Luo M, Yu D B, et al. Simple and Efficient Near-Infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission above 1000 nm [J]. Adv. Mater., 2009, 21: 111.
[2] Sun P P, Duan J P, Lih J J, et al. Synthesis of new europium complexes and their application in electroluminescent devices [J].Adv. Funct. Mater., 2003, 13: 683.
[3] D’Aléo A, Pompidor G, Elena B. Two-Photon Microscopy and Spectroscopy of Lanthanide Bioprobes [J]. ChemPhysChem., 2007, 8: 2125.
[4] Bünzli J -C G., Piguet C. Taking advantage of luminescent lanthanide ions [J]. Chem. Soc. Rev., 2005, 34: 1048.
[5] Maas H, Currao A, Calzaferri G, et al. Encapsulated lanthanides as luminescent materials [J]. Angew. Chem. Int. Ed., 2002, 114: 2607.
[6] Yu Bin, Sun Bo, Zhao Ying, et al. Spectroscopy and Spectral Analysis,2004, 24: 1571.
[7] Konig K, Liang H, Berns M W, et al. Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption [J]. Opt.Lett., 1996, 21:1090;
[8] Konig K, So P T C, Mantulin W W, et al. Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes [J]. Opt. Lett., 1997, 22: 135.
[9] Jenei A, Kirsch A K, Subramaniam V, et al. Picosecond Multiphoton Scanning Near-Field Optical Microscopy Biophys. J., 1999, 76: 1092.
[10] Wee T L, Tzeng Y K, Han C C, et al. Two-photon Excited Fluorescence of Nitrogen-Vacancy Centers in Proton-Irradiated Type Ib Diamond [J]. J. Phys. Chem. A., 2007, 111: 9379.
[11] Fu L M, Wen X F, Ai X C, et al. Efficient Two-Photon-Sensitized Luminescence of a Europium (III) Complex [J]. Angew. Chem., Int. Ed. 2005, 44: 747.
[12] Werts M H V, Nerambourg N, Pélégry D, et al. Action cross sections of two-photon excited luminescence of some Eu (III) and Tb (III) complexes [J]. Photochem. Photobiol. Sci., 2005, 4: 531.
[13] Dexter D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21: 836.
[14] Xu C, Webb W W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm [J]. J. Opt. Soc. Am. B., 1996, 13: 481.
[15] Albota M A, Xu C, Webb W W. Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm [J]. Appl. Opt., 1998, 37:7352.
[16] Shavaleev N. M., Pope S. J. A., Bell Z. R., et al. Visible-light sensitisation of near-infrared luminescence from Yb (III), Nd (III) and Er (III) complexes of 3, 6-bis (2-pyridyl) tetrazine [J]. Dalton. Trans., 2003, 808.
[17] Strasser A., Vogler A.. Intraligand phosphorescence of lead (II) [beta]- diketonates under ambient conditions [J].Journal of Photochemistry and Photobiology A: Chemistry. 2004, 165: 115.
[18] Voloshin A I, Shavaleev N M, Kazakov V P. Luminescence of praseodymium (III) chelates from two excited states (3P0 and 1D2) and its dependence on ligand triplet state energy [J]. Journal of Luminescence. 2001, 93: 115.
[19] Chin R P, Shen Y R, Petrova-koch V. Photoluminescence from porous silicon by infrared multiphoton excitation [J]. Science, 270, 776: 1995.
[20] D’Aléo A, Picot A, Baldeck P C, et al. Efficient sensitization of europium, ytterbium, and neodymium functionalized tris-dipicolinate lanthanide complexes through tunable charge-transfer excited states [J]. Inorg. Chem., 2008, 47: 10269.
|