[1] Markus A, Simon G, Klemens H, et al. Quantum optomechanics---throwing a glance[J]. J. Opt. Soc. Am. B, 2010, 27(6): A189-A197.
[2] Jähne K, Genes C, Hammerer K, et. al. Cavity-assisted squeezing of a mechanical oscillator[J]. Phys. Rev. A, 2008, 79(6), 063819-063826.
[3] LaHaye M D, Buu O, Camarota B, et al. Approaching the quantum limit of a nanomechanical resonator[J]. Science, 2004, 304(5667):74-77.
[4] Ekinci K L, Yang Y T and Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems[J], J. Appl. Phys, 2004, 95(5), 2682-2689.
[5]Caves C M. Quantum-mechanical radiation-pressure fluctuations in an interferometer[J], Phys. Rev. Lett, 1980, 45(2), 75-79.
[6]Marshall W, Simon C and Bouwmeester D. Towards quantum superpositions of a mirror[J]. Phys. Rev. Lett, 2003, 91(13), 130401-130404.
[7] Kippenberg T J and Vahala K J. Cavity optomechanics: back-action at the mesoscale[J]. Science, 2008, 321(5893):1172-1176.
[8] Gigan S, Bohm H R, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure[J]. Nature, 2006, 444(2): 67-70.
[9] Kleckner D and Bouwmeester D. Sub-kelvin optical cooling of a micromechanical resonator[J]. Nature, 2006, 444(2):75-78.
[10] Poggio M, Degen C L, Mamin H J, et al. Feedback cooling of a cantilever's fundamental mode below 5 Mk[J]. Phys. Rev. Lett, 2007, 99(1):017201-017205.
[11] Arcizet O, Cohadon P-F, Briant T. et al. Radiation-pressure cooling and optomechanical instability of a micromirror[J].Nature,2006, 444(2):71-74.
[12] Bhattacharya M and Meystre P. Trapping and cooling a mirror to its quantum mechanical ground state[J]. Phys. Rev. Lett, 2007, 99(7):073601-073605.
[13]Wilson-Rae I, Nooshi N, Zwerger W, et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction[J]. Phys. Rev. Lett, 2007, 99(9):093901-093905.
[14] Marquardt F, Chen J P, Clerk A A, et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion[J]. Phys. Rev. Lett, 2007, 99(9): 093902-093906.
[15] Mancini S, Vitali D, and Tombesi P. Optomechanical cooling of a macroscopic oscillator by homodyne feedback[J]. Phys. Rev. Lett, 1998, 80(4): 688-692.
[16] Teufel J D, Harlow J W, Regal C A, et al. Dynamical backaction of microwave fields on a nanomechanical oscillator[J]. Phys. Rev. Lett, 2008, 101(19):197203-197207.
[17] Schliesser A, Rivière R, Anetsberger G, et al. Resolved-sideband cooling of a micromechanical oscillator[J]. Nat. Phys, 2008, 4(5), 415-419.
[18] Park Y S and Wang H L. Resolved-sideband and cryogenic cooling of an optomechanical resonator[J]. Nature phys, 2009, 5(7), 489-493.
[19] Li Y, Wang Y D, Xue F, et al. Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator[J]. Phys. Rev. B, 2009, 78(13), 134301-134309.
[20] Tian L. Ground state cooling of a nanomechanical resonator via parametric linear coupling [J]. Phys. Rev. B, 2007, 79(19):193407-193411.
[21] Groblacher S, Hammerer K, Michael R. et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field[J]. Nature, 2009, 460(7256):724-727.
[22] Dobrindt J M, Wilson-Rae I, and Kippenberg T J. Parametric normal-mode splitting in cavity optomechanics[J]. Phys. Rev. Lett, 2008, 101(26):263602-263606.
[23] Huang S M and G. S. Agarwal. Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity[J]. Phys. Rev. A, 2009, 80(3):033807-033814.
[24] Genes C, Vitali D, Tombesi P, et al. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes[J]. Phys. Rev. A, 2008, 77(3):033804-033813.
[25] Biancofiore C, Karuza M, Galassi M, et. al. Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane[J]. arXiv: 1102. 2210vl.
[26] Walls D F and Milburn G J, Quantum Optics[M]. Berlin: Springer-Verlag, 1998.
[27] Hurwitz A. In selected papers on mathematical trends in control theory[M]. New York: Dover, 1964.
[28] DeJesus E X and Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations[J]. Phys. Rev. A, 1987, 35(12):5288-5291.
[29]Gardiner C W and Zoller P. Quantum Noise[M]. Berlin: Springer-Verlag, 1991.
[30] Giovannetti V and Vitali D, Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion[J]. Phys. Rev. A, 2001, 63(2):023812-023820.
[31] Dantan A, Genes C, Vitali D, et al. Self-cooling of a movable mirror to the ground state using radiation pressure[J]. Phys. Rev. A, 2008, 77(1): 011804-011808.
[32] Weisbuch C, Nishioka M, Ishikawa A, and Arakawa Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[J]. Phys. Rev. Lett, 1992, 69(23), 3314--3317.
[33] Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J]. Nature, 2004, 431(7005), 162-167.
[34] Thompson R J, Rempe G. and Kimble H J. Observation of normal-mode splitting for an atom in an optical cavity[J]. Phys. Rev. Lett, 1992, 68(8), 1132--1135.
[35] Fleischhauer M, Imamoglu A, and Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Rev. Mod. Phys, 2005, 77(2), 633-673.
[36]He W, Li J J, and Zhu K D. Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems[J]. Opt. Lett, 2010, 35(3), 339-341.
[37] Corbitt T, Wipf C, Bodiya T. et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK[J]. Phys. Rev. Lett, 2007, 99(16), 160801-160804.
[38] Verlot P, Tavernarakis A, T Briant, et al. Backaction amplification and quantum limits in optomechanical measurements[J]. Phys. Rev. Lett, 2010, 104(13):133602-133606. |