[1] Nielsene M A,Chuang I L.Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2000. 47-54.
[2] Xue F, Du J F, Zhou X Y, et al. Physical implementations of quantum computation[J]. Physics(物理), 2004, 33(10):728-734 (in Chinese).
[3] Divincenzo D P. The physical implementation of quantum computation[J]. Fortschr. Phys. , 2000, 48(9~11): 771-783.
[4] Cirac J I, Zoller P, Kimble H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Phys. Rev. Lett., 1997, 78(16): 3221-3224.
[5] Yao W, Liu R B, Sham L J. Customizing single photon wavepackets: control of the spin/photon interface in a quantum network[J]. Physics(物理), 2006, 35(7):537-540. (in Chinese).
[6] Yao W, Liu R B, Sham L J, Theory of Control of the Spin-Photon Interface for Quantum Networks[J]. Phys. Rev. Lett., 2005, 95(3): 030504-030506
[7] Yao W, Liu R B, Sham L J. Theory of control of the dynamics of the interface between stationary and flying qubits[J]. J. Opt. B, 2005, 7(10): S318–S325
[8] Scully M O, Zubairy M S. Quantum Optics[M]. Cambridge: Cambridge University Press, 1997. 10-26
[9] Liu R B, Yao W, Sham L J. Coherent control of cavity quantum electrodynamics for quantum nondemolition measurements and ultrafast cooling[J]. Phys. Rev. B, 2005, 72(8):081306-081309
[10] Reithmaier J P, Sek G, Loffler A, et al. Strong coupling in a single quantum dot semiconductor microcavity system[J]. Nature, 2004, 432:197-200
[11] Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[J]. Nature, 2004, 432:200-203 |