[1] Mader H S, Kele P, Saleh S M et al. Upconverting luminescent nanoparticles for use in
bioconjugation and bioimaging [J]. Current Opinion in Chemical Biology, 2010, 14: 582–596.
[2] Auzel F. Compt Rend Acad Sci Paris B, 1966, 262:1016.
[3] ShockleY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J. Appl. Phys., 1961, 23:510-519.
[4] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1): 139.
[5] Boyer J C, Cuccia L A and Capobianco J A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J]. Nano. Lett. 2007, 7(3):847-852.
[6] Chen G Y, Ohulchanskyy T Y, Kumar R et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. Acs. Nano, 2010, 4(6):3163-3168
[7] Vetrone F, Naccache R, Mahalingam V et al. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Adv. Funct. Mater. 2009, 19:2924-2929
[8] Esteban R, Laroche M, and Greffet J-J. Influence of metallic nanoparticles on upconversion processes [J]. J. Appl. Phys., 2009, 105:033107
[9] Fujii M, Nakano T, Imakita K et al. Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells. [J] J. Phys. Chem. C 2013, 117:1113?1120
[10] Halas N J. Plasmonics: an emerging field fostered by nano letters [J].Nano. Lett., 2010, 10:3816
[11] Kabasghin A V, Evans P, Pastkovsky S et al. Plasmonic nanorod metamaterials for biosensing [J]. Nat. Mater., 2009, 8:867-871
[12] Lim D K, Jeon K S, Kim H M et al. Nanogap-engineerable raman-active nanodumbbells for single-molecule detection [J]. Nat. Mater., 2010, 9: 60-67
[13] Deng W and Goldys E M. Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences [J]. Langmuir. 2012, 28:10152?10163
[14] Kim S, Jin J, Kim Y J et al. High-harmonic generation by resonant Plasmon field enhancement [J]. Nat. Mater. 2008, 453(5): 757-760
[15] Kassab L R P. Influence of silver nanoparticles in the luminescence efficiency of Pr3+doped tellurite glasses [J]. J. Appl. Phys., 2007, 102:103515
[16] Som T and Karmakar B. Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites [J]. J. Appl. Phys., 2009, 105: 013102
[17] Zhang F, Braun G B, Shi Y et al. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles [J]. J. Am. Chem. Soc., 2010, 132: 2850-2851
[18] Saboktakin M, Ye X, OH S J et al. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation [J]. Acs. Nano, 2012, 10(6):8758
[19] Schietinger S, Aichele T, Wang H Q et al. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals [J]. Nano. Lett., 2010, 10: 134-138
[20] Verhagen E, Kuipers L, Polman A. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence [J]. Opt. Express, 2009, 7(1):14588
[21] Zhang W, Ding F, Chou S Y et al. Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas [J]. Adv. Mater., 2012, 24:236
[22] Yuan P Y, Lee Y H, M K et al. Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging [J]. Nanoscale., 2012, 4, 5132
[23] Li Z Q, Chen S, Li J J et al. Plasmon-enhanced upconversion fluorescence in NaYF4: Yb/Er/Gd nanorods coated with Au nanoparticles or nanoshells [J]. J. App. Phys., 2012, 111:014310
[24] Zhang H, Li Y, Ivanov I A et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells [J]. Angew. Chem., 2010, 122: 2927-2930
[25] Mackowski S, Wormke S, Maier A J et al. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes [J]. Nano. Lett., 2008, 8(2):558-564
[26] Song J H, Atay T, Shi S et al. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons [J]. Nano. Lett., 2005, 5:1557–1561.
[27] Priyam A, Idris N M, Zhang Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion ?uorescence and dark?eld imaging [J]. J. Mater. Chem., 2012, 22: 960
[28] Halas N J, Loo C, Lowery A et al. Immunotargeted nanoshells for integrated cancer imaging and therapy [J]. Nano. Lett., 2005, 5:709.
[29] Dong B, Xu S, and Sun J et al. Multifunctional NaYF4:Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy [J]. J. Mater. Chem., 2011, 21:6193
[30] Wang M, Hou W, Mi C C et al. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between Near-Infrared responsive NaYF4: Yb, Er Upconversion Fluorescent nanoparticles and gold nanoparticles [J]. Anal. Chem., 2009, 81:8783
[31] Wild J De, Meijerink A, Rath J K et al. Towards upconversion for amorphous silicon solar cells [J]. Sol. Cells., 2010, 94:1919
[32] Atre A C ,Garcia-Etxarria , Alaeian H et al. Toward high-efficiency solar upconversion with plasmonic nanostructures [J]. J. Opt. ,2012,14: 024008
[33] Li Z Q, Li X D, Liu Q Q et al. Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for ?exible amorphous silicon solar cells [J]. Nanotechnolog., 2012, 23: 025402
[34] Zhang S Z, Sun L D, Yan C H et al. Reversible luminescence switching of NaYF4: Yb, Er nanoparticles with controlled assembly of gold nanoparticles [J]. Chem. Commun., 2009, 2547
|