J4 ›› 2013, Vol. 30 ›› Issue (6): 641-650.
• Review • Next Articles
Nuernisha Alifu, JIN Chong-jun
Received:
2013-03-19
Revised:
2013-05-15
Published:
2013-11-28
Online:
2013-11-13
CLC Number:
Nuernisha Alifu, JIN Chong-jun. LSPR-enhanced upconversion luminescence of NaYF4:Yb,Er nanoparticles and its application[J]. J4, 2013, 30(6): 641-650.
[1] Mader H S, Kele P, Saleh S M et al. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging [J]. Current Opinion in Chemical Biology, 2010, 14: 582–596. [2] Auzel F. Compt Rend Acad Sci Paris B, 1966, 262:1016. [3] ShockleY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J. Appl. Phys., 1961, 23:510-519. [4] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1): 139. [5] Boyer J C, Cuccia L A and Capobianco J A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J]. Nano. Lett. 2007, 7(3):847-852. [6] Chen G Y, Ohulchanskyy T Y, Kumar R et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. Acs. Nano, 2010, 4(6):3163-3168 [7] Vetrone F, Naccache R, Mahalingam V et al. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Adv. Funct. Mater. 2009, 19:2924-2929 [8] Esteban R, Laroche M, and Greffet J-J. Influence of metallic nanoparticles on upconversion processes [J]. J. Appl. Phys., 2009, 105:033107 [9] Fujii M, Nakano T, Imakita K et al. Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells. [J] J. Phys. Chem. C 2013, 117:1113?1120 [10] Halas N J. Plasmonics: an emerging field fostered by nano letters [J].Nano. Lett., 2010, 10:3816 [11] Kabasghin A V, Evans P, Pastkovsky S et al. Plasmonic nanorod metamaterials for biosensing [J]. Nat. Mater., 2009, 8:867-871 [12] Lim D K, Jeon K S, Kim H M et al. Nanogap-engineerable raman-active nanodumbbells for single-molecule detection [J]. Nat. Mater., 2010, 9: 60-67 [13] Deng W and Goldys E M. Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences [J]. Langmuir. 2012, 28:10152?10163 [14] Kim S, Jin J, Kim Y J et al. High-harmonic generation by resonant Plasmon field enhancement [J]. Nat. Mater. 2008, 453(5): 757-760 [15] Kassab L R P. Influence of silver nanoparticles in the luminescence efficiency of Pr3+doped tellurite glasses [J]. J. Appl. Phys., 2007, 102:103515 [16] Som T and Karmakar B. Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites [J]. J. Appl. Phys., 2009, 105: 013102 [17] Zhang F, Braun G B, Shi Y et al. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles [J]. J. Am. Chem. Soc., 2010, 132: 2850-2851 [18] Saboktakin M, Ye X, OH S J et al. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation [J]. Acs. Nano, 2012, 10(6):8758 [19] Schietinger S, Aichele T, Wang H Q et al. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals [J]. Nano. Lett., 2010, 10: 134-138 [20] Verhagen E, Kuipers L, Polman A. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence [J]. Opt. Express, 2009, 7(1):14588 [21] Zhang W, Ding F, Chou S Y et al. Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas [J]. Adv. Mater., 2012, 24:236 [22] Yuan P Y, Lee Y H, M K et al. Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging [J]. Nanoscale., 2012, 4, 5132 [23] Li Z Q, Chen S, Li J J et al. Plasmon-enhanced upconversion fluorescence in NaYF4: Yb/Er/Gd nanorods coated with Au nanoparticles or nanoshells [J]. J. App. Phys., 2012, 111:014310 [24] Zhang H, Li Y, Ivanov I A et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells [J]. Angew. Chem., 2010, 122: 2927-2930 [25] Mackowski S, Wormke S, Maier A J et al. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes [J]. Nano. Lett., 2008, 8(2):558-564 [26] Song J H, Atay T, Shi S et al. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons [J]. Nano. Lett., 2005, 5:1557–1561. [27] Priyam A, Idris N M, Zhang Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion ?uorescence and dark?eld imaging [J]. J. Mater. Chem., 2012, 22: 960 [28] Halas N J, Loo C, Lowery A et al. Immunotargeted nanoshells for integrated cancer imaging and therapy [J]. Nano. Lett., 2005, 5:709. [29] Dong B, Xu S, and Sun J et al. Multifunctional NaYF4:Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy [J]. J. Mater. Chem., 2011, 21:6193 [30] Wang M, Hou W, Mi C C et al. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between Near-Infrared responsive NaYF4: Yb, Er Upconversion Fluorescent nanoparticles and gold nanoparticles [J]. Anal. Chem., 2009, 81:8783 [31] Wild J De, Meijerink A, Rath J K et al. Towards upconversion for amorphous silicon solar cells [J]. Sol. Cells., 2010, 94:1919 [32] Atre A C ,Garcia-Etxarria , Alaeian H et al. Toward high-efficiency solar upconversion with plasmonic nanostructures [J]. J. Opt. ,2012,14: 024008 [33] Li Z Q, Li X D, Liu Q Q et al. Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for ?exible amorphous silicon solar cells [J]. Nanotechnolog., 2012, 23: 025402 [34] Zhang S Z, Sun L D, Yan C H et al. Reversible luminescence switching of NaYF4: Yb, Er nanoparticles with controlled assembly of gold nanoparticles [J]. Chem. Commun., 2009, 2547 |
[1] | XU Jianwei , OUYANG Shoujian , DUAN Shouxin , ZOU Liner , , DENG Xiaohua , SHEN Yun, . Terahertz planar toroidal dipole metamaterial sensor for detecting gutter oil [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 333-339. |
[2] | TONG Ye , ZHENG Yuhang , LIU Wenpeng , , DING Shoujun , ∗. Synthesis and luminescent properties of Dy 3+ and Eu 3+ codoped NaY(MoO4)2 phosphors [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 32-39. |
[3] | CHEN Weidong #, ZHUO Linqing #, ZHU Wenguo , ZHENG Huadan , ZHONG Yongchun , TANG Jieyuan , , XIAO Yi , XIE Mengyuan , ZHANG Jun , YU Jianhui ∗ , CHEN Zhe , ∗. Research progress of optical fiber integrated photodetectors [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 942-954. |
[4] | LIAO Yangfang, XIE Quan∗. Effects of annealing temperature and annealing time on structure of Mg2Si films on different substrates [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 644-650. |
[5] | HAN Weimin, NI Youbao∗, WU Haixin, WANG Zhenyou, HUANG Changbao. Growth of a new long-wave infrared material PbGa6Te10 [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 172-179. |
[6] | YANG Fan, REN Guohao. Development of ultrafast scintillation crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 243-258. |
[7] | ZHANG Zhongzheng, , ZHANG Chunhong, YAN Wanjun, QIN Xinmao, . Influence of doping on photoelectric properties of new two-dimensional material phosphorene [J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 108-115. |
[8] | ZHANG Feipeng1,2*, ZHANG Jiuxing3, SHI Jiali3, ZHANG Jingwen3, DU Lingzhi1, ZHANG Kunshu1, LI Hui1, WANG Chaoyong1. Investigation of Electronic Properties of Anti-ferromagnetic State Co-based Layered Ca2Co2O5 Compound Oxide [J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 371-377. |
[9] | YAO Yanan1,2,ZHANG Shujie1,2,GU Guixin1,WAN Songming1,3. Studies on the stimulated Raman scattering active mode of the Ca3(BO3)2 crystal [J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 213-218. |
[10] | . Optical absorption properties in one-dimensional graphene-based photonic crystals [J]. J4, 2018, 35(5): 589-593. |
[11] | WEI Shugong, FANG Hui, WANG Ruzhi, LI Fansheng, HUANG Cansheng, . Electronic states, magnetic and optical properties of Zn vacant ZnS [J]. J4, 2018, 35(4): 507-512. |
[12] | XU Yanli1,2*, MEI Zhonglei2, LUO Jiaolian1. An oblique-layer composite structure and its potential application in absorbing materials [J]. Chinese Journal of Quantum Electronics, 2018, 35(3): 353-358. |
[13] | MENG Zhicheng, SUN Yongwei, WANG Song, YUAN Qingyun. Influence of ground heat conduction on inner charge of polyimide [J]. Chinese Journal of Quantum Electronics, 2018, 35(3): 366-373. |
[14] | MENG Zhicheng, SUN Yongwei, YUAN Qingyun, WANG Song, ZHOU Lidong. Trap distribution of polyimide at different temperatures [J]. J4, 2018, 35(2): 230-235. |
[15] | SONG Chao1, DONG Weiwei1,2, WANG Shimao1, SHAO Jingzhen1, FANG Xiaodong1,2*. Synthesis of two morphologies FeS2 and its application for dye-sensitized solar cells [J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 628-634. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 477
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||