[1] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature (London), 2002, 415, 39-44.[2] Pedri P, Pitaevskii L, Stringari S, et al. Expansion of a Coherent Array of Bose-Einstein Condensates. Phys. Rev. Lett., 2001, 87, 220401[3] Peik E, Dahan M B, Bouchoule I, et al. Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams. Phys. Rev. A, 1997, 55, 2989-3001.[4] Orzel C, Tuchman A K, Fenselau M L, et al. Squeezed states in a Bose-Einstein condensate. Science, 2001, 291, 2386-2389.[5] Cataliotti F S, Burger S, Fort C, et al. Josephson junction arrays with Bose-Einstein condensates. Science, 2001, 293, 843-846.[6] Anker Th, Albiez M, Gati R, et al. Nonlinear self-trapping of matter waves in periodic potentials. Phys. Rev. Lett., 2005, 94, 020403[7] Jack M W, Collett M J, and Walls D F. Coherent quantum tunneling between two Bose-Einstein condensates. Phys. Rev. A, 1996, 54, R4625-R4628.[8] Milburn G J, Corney J, Wright E M, et al. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A, 1997, 55, 4318-4324.[9] Javanainen J and Wilkens M. Phase and phase diffusion of a split Bose-Einstein condensate. Phys. Rev. Lett., 1997, 78, 4675-4678.[10] Molmer K. Phase collapse and excitations in Bose-Einstein condensates. Phys. Rev. A, 1998, 58, 566-575.[11] Javanainen J and Ivanov M Y. Splitting a trap containing a Bose-Einstein condensate: Atom number fluctuations. Phys. Rev. A, 1999, 60, 2351-2359[12] Leggett A J and Sols F. On the concept of spontaneously broken gauge symmetry in condensed matter physics. Found. Phys., 1991, 21, 353-364.[13] Sols F. Randomization of the phase after suppression of the Josephson coupling. Phys. B 1994, 194, 1389-1390.[14] Zapata I, Sols F, and Leggett A J. Josephson effect between trapped Bose-Einstein condensates. Phys. Rev. A, 1998, 57, R28-R31.[15] Wang Bing, Zhu Qiang, Zhou Hailong, et al. Measurement of phase fluctuations of Bose-Einstein condensates in an optical lattice. Phys. Rev. A, 2012, 86, 053609.[16] Wang Xiao Rui, Yang Lu, Tan Xin Zhou, et al. Bose-Einstein Condensates in a One-Dimensional Optical Lattice: from Superfluidity to Number-Squeezed States. Chin. Phys. Lett., 2009, 26, 083701.[17] Sapiro R E, Zhang R, and Raithel G. Reversible loss of superfluidity of a Bose–Einstein condensate in a 1D optical lattice. New J. Phys., 2009, 11, 013013[18] Freimund D L, Aflatooni K, and Batelaan H. Observation of the Kapitza-Dirac effect. Nature (London), 2001, 413, 142-143. |