[1] He J H, Wu X H. Exp-function method for nonlinear wave equation [J]. Chaos Soliton Fract, 2006, 3(11): 700-708.
[2] Wang M L. Exact solutions of a compound KdV-Burgers equation [J]. Phys. Lett. A 1996, 213(5): 279-287.
[3] Liu J, Yang K. The extended F-expansion method and exact solutions of nonlinear PDEs [J]. Chaos Soliton Fract, 2004, 22(1): 111-121.
[4] Wazwaz A.M. The tanh method for travelling wave solution of nonlinear wave equations [J]. Appl. Math. Comput, 2007, 187(2): 1131-1142.
[5] Fan E G, Zhang J. Applications of the Jacobi elliptic function method to special-type nonlinear equations [J]. Phys. Lett. A , 2002, 305(6): 383-392
[6] Fu Z T, Liu S K, Liu S D, Zhao Q. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J]. Phys. Lett. A, 2001, 290(1): 72-76.
[7] Xin X P, Liu X Q, Zhang L L. Explicit solutions of the BK equation [J]. Applied Mathematics and Computation, 2010, 215(10): 3669–3673.
[8] Liu N, Liu X Q. Similarity reductions and similarity solutions of the (3+1)-dimensional Kadomtsev–Petviashvili equation [J]. Chinese Physics Letters, 2008, 25(10): 3527–3530.
[9] Wang L, Liu X Q, Dong Z Z. Study of(2+1)-dimensional higher-order Broer–Kaup system [J]. Communications in Theoretical Physics, 2007, 47(3): 403–408.
[10] Chen M, Liu X Q, Wang M. Exact solutions and conservation laws of symmetric regularized long wave equations [J].Chinese Journal of Quantum Electronics(量子电子学报), 2011, 29(5): 21-26(in Chinese).
[11]Zhang Y Y, Wang G W, Liu X Q .Symmetry reductions and explicit solutions of the (2+1)-dimensional nonlinear evolution equation [J].Chinese Journal of Quantum Electronics(量子电子学报), 2012, 29(4) 411-416(in Chinese).
[12] Miao Q, Xin X P, Chen Y. Nonlocal symmetries and explicit solutions of the AKNS system [J]. Applied Mathematics Letters 2014,28 : 7–13.
[13] Wazwaz A.M. Compactons in a Class of Nonlinear Dispersive Equations [J]. Mathematical and Computer Modelling, 2003, 37(3) : 333-341.
[14] Johnpillai A G, Khalique C M, Biswas A. Exact solutions of KdV equation with time-dependent coefficients [J]. Applied Mathematics and Computation, 2010, 216(10): 3114-3119.
[15] Nail H. Ibragimov. A new conservation theorem [J]. Math. Anal. Appl, 2007, 333(1): 311-328.
[16] Xin X P, Liu X Q, Zhang L L, Symmetry reduction, exact solutions and conservation laws of the Sawada–Kotera–Kadomtsev–Petviashvili equation [J]. Applied Mathematics and Computation, 2010, 216(4):1065-1071.
[17] Wang G W , Liu X Q, Zhang Y Y, Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation [J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18: 2313-2320.
|