J4 ›› 2014, Vol. 31 ›› Issue (4): 394-402.
Previous Articles Next Articles
Fan Ya-xian,Wang Hui-tian
Published:
2014-07-28
Online:
2014-07-30
CLC Number:
Fan Ya-xian,Wang Hui-tian. All solid-state Raman lasers[J]. J4, 2014, 31(4): 394-402.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Smekal A. Zur quantentheorie der dispersion [J]. Naturwissenschaften, 1923, 11(43): 873-875. [2] Raman C V, Krishnan K S. A new type of secondary radiation [J]. Nature, 1928, 121(3048): 501-502. [3] Landsberg G S and Mandelshtam L I. Eine neue Erscheinungen bei der Lichtzerstreuung in Kristallen [J]. Naturwiss, 1928, 16: 557-558. [4] Woodbury E J, Ng W K. Ruby laser operation in the near IR [J]. proc. IRE, 1962, 50(11): 2367-&. [5] Granados E, Spence D J, and Mildren R P. Deep ultraviolet diamond Raman laser [J]. Optics Express, 2011, 19(11): 10857. [6] Li Z H, Peng J Y, Zheng Y. CW mode-locked self-Raman 1.17 μm Nd: GdVO4 laser with a novel long cavity [J]. Optics & Laser Technology, 2014, 58: 39-42. [7] Zhao J, Zhang X, Guo X, et al. Diode-pumped actively Q-switched Tm, Ho: GdVO4/BaWO4 intracavity Raman laser at 2533 nm [J]. Optics letters, 2013, 38(8): 1206-1208. [8] Gao Z L, Liu S D, Zhang J J, Zhang S J, Zhang W G., Wang S P, and Tao X T. A high efficiency third order Stokes Raman laser operating at 1500 nm based on a BaTeMo2O9 crystal [J]. Laser Physics Letters, 2013, 10(12), 125403. [9] Grabtchikov A S, Lisinetskii V A, Orlovich V A, et al. Multimode pumped continuous-wave solid-state Raman laser [J]. Optics letters, 2004, 29(21): 2524-2526. [10] Burakevich V N, Lisinetskii V A, Grabtchikov A S, et al. Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion [J]. Applied Physics B, 2007, 86(3): 511-514. [11] Lee A J, Pask H M, Omatsu T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action [J]. Applied Physics B, 2007, 88(4): 539-542. [12] Dekker P, Pask H M, Spence D J, et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd: GdVO4 at 586.5 nm [J]. Optics Express, 2007, 15(11): 7038-7046. [13] Demidovich A A, Grabtchikov A S, Lisinetskii V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4) 2 laser [J], Optics letters, 2005, 30(13): 1701-1703. [14] Lisinetskii V A, Grabtchikov A S, Demidovich A A, et al. Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation [J]. Applied Physics B, 2007, 88(4): 499-501. [15] Chang Y T, Huang Y P, Su K W, and Chen Y F. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions [J]. Optics Express, 2008, 16(25): 21155. [16] Chang Y T, Su K W, Chang H L, et al. Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd: YVO4 crystal as a self-Raman medium [J]. Opics Express, 2009, 17: 4330-4335. [17] Fan L, Fan Y X, Wang H T. A compact efficient continuous-wave self- frequency Raman laser with a composite YVO4/Nd:YVO4/YVO4 crystal [J]. Applied Physics B, 2010, 101(3): 493-496. [18] Du, C., Guo, Y., Yu, Y., Huang, G., Ruan, S. Diode-end-pumped Q-switched composite YVO4/Nd: YVO4/YVO4 crystal self-Raman second-Stokes laser [J]. Laser Physics Letters, 2013, 10(5), 055802. [19] Orlovich V A, Burakevich V N, Grabtchikov A S, et al. Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd: YVO4 laser [J]. Laser Physics Letters, 2006, 3(2): 71. [20] Pask H M. Continuous-wave, all-solid-state, intracavity Raman laser [J]. Optics letters, 2005, 30(18): 2454-2456. [21] Dekker P, Pask H M, Piper J A. All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser [J]. Optics letters, 2007, 32(9): 1114-1116. [22] Fan L, Fan Y X, Duan Y H, et al. Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser [J] Applied Physics B, 2009, 94(4): 553-555. [23] Zverev P G, Basiev T T, Sobol A A, et al. Stimulated Raman scattering in alkaline-earth tungstate crystals [J]. Quantum Electronics, 2000, 30(1): 55. [24] Piper J A, Pask H M. Crystalline Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704. [25] Ge W W, Zhang H J, Wang J Y, et al. Thermal and mechanical properties of BaWO4 crystal [J]. Journal of applied physics, 2005, 98(1): 013542. [26] Zhang G, Jia R, Wu Q. Preparationstructural and optical properties of AWO4 (A= Ca, Ba, Sr) nanofilms [J]. Materials Science and Engineering B, 2006, 128(1): 254-259. [27] Fan L, Fan Y X, Li Y Q, et al. High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal [J]. Optics letters, 2009, 34(11): 1687-1689. [28] Murray J T, Powell R C, Peyghambarian N, et al. Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba (NO3)2 nonlinear crystals [J]. Optics letters, 1995, 20(9): 1017-1019. [29] Monarski T W, Hannon S M, Gatt P. Eye-safe coherent lidar detection using a 1.5-um Raman laser [C] //Aerospace/Defense Sensing, Simulation, and Controls. International Society for Optics and Photonics, 2001: 229-236. [30] Kaminskii A A, Ueda K I, Eichler H J, Kuwano Y, Kouta H., Bagaev S N, and Lu J. Tetragonal vanadates YVO4 and GdVO4-new efficient chi (3)- materials for Raman lasers [J]. Optics communications, 2001, 194(1): 201-206. [31] Chen Y F. Efficient 1521-nm Nd: GdVO4 Raman laser [J]. Optics letters, 2004, 29(22): 2632-2634. [32] Chen Y F. Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd: YVO4 crystal [J]. Optics letters, 2004,29(18), 2172-2174. [33] Basiev T T, Sobol A A, Voronko Y K, et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers [J]. Optical Materials, 2000, 15(3): 205. [34] Fan J D, Zhang H J, Wang J Y, et al. Growth and thermal properties of SrWO4 single crystal [J]. Journal of applied physics, 2006, 100(6): 063513. [35] Ivleva L I, Basiev T T, Voronina I S, et al. SrWO4:Nd3+–new material for multifunctional lasers [J]. Optical Materials, 2003, 23(1): 439-442. [36] Lan R, Ding S, Wang M, et al. A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation [J]. Laser Physics Letters, 2013, 10(2): 025801. [37] Jelinkova H, ?ulc J, Basiev T T, et al. Stimulated Raman scattering in Nd: SrWO4 [J]. Laser Physics Letters, 2005, 2: 4-11. [38] Chen X, Zhang X, Wang Q, et al. Highly efficient diode-pumped actively Q-switched Nd: YAG-SrWO4 intracavity Raman laser [J]. Optics Letters, 2008, 33:705-707. [39] Jia G, Tu C, Brenier A, et al. Thermal and optical properties of Nd3+: SrWO4: a potential candidate for eye-safe 1.517 μm Raman lasers [J]. Applied Physics B, 2005, 81: 627-632. [40] Fan Y X, Liu Y, Duan Y H, et al. High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal [J]. Applied Physics B, 2008, 93(2-3): 327-330. [41] Hu C R, Slipchenko M N, Wang P, et al. Stimulated Raman scattering imaging by continuous-wave laser excitation [J]. Optics letters, 2013, 38(9): 1479-1481. [42] Li R, Bauer R M, Lubeigt W. Continuous-Wave Nd: YVO4 self-Raman lasers based on the 379cm-1 and 893cm-1 shifts [C]//Advanced Solid State Lasers. Optical Society of America, 2013: ATu3A. 41. [43] Demidovich A A, Grabtchikov A S, Lisinetskii V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3+: KGd (WO4)2 laser [J]. Optics letters, 2005, 30(13): 1701-1703. [44] Takahashi Y, Inui Y, Asano T, et al. Ultralow-threshold Continuous-wave Raman Silicon Laser Using a Photonic Crystal High-Q Nanocavity [C]//CLEO: Science and Innovations. Optical Society of America, 2013 [45] Li B, Yao J Q, Ding X, et al. A novel CW yellow light generated by a diode-end-pumped intra-cavity frequency mixed Nd:YVO4 [J]. Optics & Laser Technology, 2014, 56: 99-101. [46] Du C, Guo Y, Yu Y, et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559nm [J]. Optics & Laser Technology, 2013, 47: 43-46. [47] Lee A J, Spence D J, Piper J A, et al. A wavelength-versatile, continuous -wave, self-Raman solid-state laser operating in the visible [J]. Optics Express, 2010, 18(19): 20013. [48] Lee A J, Pask H M, Piper J A, et al. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission [J]. Optics Express, 2010, 18(6): 5984-5992. [49] Omatsu T, Lee A, Pask H. Compact yellow-orange Raman lasers [C]. Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013: 1. [50] Parrotta D C, Kemp A J, Dawson M D, et al. Multi-Watt, Continuous-Wave, Tunable Diamond Raman Laser with Intracavity Frequency Doubling to the Visible [J]. 2013, IEEE Journal of Selected Topics In Quantum Electronics, 19(4): 1400108. |
[1] | ZHANG Zhen , DUAN Dian , CHEN Yujun , WEI Shanshan , MA Jindong , YAO Bo , MAO Qinghe . Picosecond pulse fiber front end based on narrow⁃band dissipative soliton Figure⁃9 fiber oscillator and single⁃stage single⁃mode fiber amplifier [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 476-482. |
[2] | TANG Jingling , QI Yue , BAI Zhenxu , QI Yaoyao , DING Jie , YAN Bingzheng , WANG Yulei , LYU Zhiwei , . Passively Q⁃switched sub⁃nanosecond laser based on YAG/Nd: YAG/Cr4+: YAG composite crystal [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 483-491. |
[3] | CHEN Yujun , , YAO Bo , LIU Haowei , WEI Shanshan , MAO Qinghe , ∗. Development of single-longitudinal-mode DBR fiber laser based on thulium-doped silica glass fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 56-61. |
[4] | HU Zexiong , , YOU Libing , ∗ , CUN Chao , WANG Hongwei , FAN Jun , WANG Qi , ZHANG Yanlin , FANG Xiaodong , . Time-delay synchronization system with low jitter for excimer laser [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 69-78. |
[5] | ZHONG Yulong , , CHENG Tingqing ∗. Experimental study of LD side-pumped Tm:YAG electro-optically Q-switched laser [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 736-741. |
[6] | ZHANG Yanlin , , YOU Libing , ∗ , WANG Hongwei , WANG Qi , HU Zexiong , , FAN Jun , , FANG Xiaodong , . Excimer laser amplification technology of ultraviolet ultrashort pulse [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 677-686. |
[7] | YANG Hao, TENG Hao, ∗, LYU Renchong, ZHU Jiangfeng∗, WEI Zhiyi, . Study on femtosecond chirped-pulse amplification based on concentric stretcher [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 566-573. |
[8] | KANG Renzhu, LYU Renchong, TENG Hao, ZHU Jiangfeng, WEI Zhiyi, . Study on Yb: KGW regenerative amplifier based on improved Frantz-Nodvik equation [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 574-582. |
[9] | LI Chenrui, LI Xiangle, YING Jiajun, WU Yitong, SHENG Yuqi, ZHOU Yong, GAO Weiqing. Beat-free 1570 nm fiber laser and its application in 2 m wave band fiber laser generation [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 591-597. |
[10] | WANG Gang, REN Changliang∗. Research on light source in new quantum radar [J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 659-668. |
[11] | CHEN Youze, ZHANG Chen, ZHAO Yunkun, LV liang. Measurement of laser free spectral range based on three-longitudinal mode laser self-mixing sensing system [J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 669-676. |
[12] | BO Yong, BIAN Qi, PENG Qinjun, XU Zuyan, WEI Kai, ZHANG Yudong, FENG Lu, XUE Suijian. Development of Sodium Beacon Laser [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 430-446. |
[13] | YANG Xuezong, ∗, FENG Yan∗. Diamond Raman Lasers for Sodium Guide Star [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 447-455. |
[14] | . Research progress of fiber coupled technology for side emission semiconductor laser [J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 641-650. |
[15] | . Chirp adjustable 1060 nm square-wave pulse fiber laser [J]. Chinese Journal of Quantum Electronics, 2019, 36(4): 423-427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||