[1]Abdel-All N H, Abdel-Razek M A A, Seddeek A A K. Expanding the Tanh-Function Method for Solving Nonlinear Equations[J]. Applied Mathematics, 2011, 2(9).
[2] Parkes E J. Observations on the tanh–coth expansion method for finding solutions to nonlinear evolution equations[J]. Applied Mathematics and Computation, 2010, 217(4): 1749-1754.
[3]He Y, Li S, Long Y. A improved F‐expansion method and its application to Kudryashov–Sinelshchikov equation[J]. Mathematical Methods in the Applied Sciences, 2013.
[4] Dimitrova Z I. Discussion on exp-function method and modified method of simplest equation[J]. arXiv preprint arXiv:1303.0122, 2013.
[5] Bhrawy A H, Abdelkawy M A, Biswas A. Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4): 915-925.
[6] Wang Mingliang. Exact solutions for a compound KdV-Burgers equation[J]. Physics Letters A, 1996, 213(5): 279-287.
[7]Zhang Y Y, Wang G W, Liu X Q. Symmetry reductions and explicit solutions of the (2+1)-dimensional nonlinear evolution equation [J]. Chinese Journal of Quantum Electromics (量子电子学报), 2012, 29: 411-416(in Chinese).
张颖元,刘希强,王岗伟. (2+1)维非线性发展方程的对称约化和显式解[J].量子电子学报,2012,29(2): 411-416.
[8]Chen M,Liu X Q,Wang M. Exact solutions and conservation laws of symmetric regularized long wave equations [J]. Chinese Journal of Quantum Electromics (量子电子学报), 2011, 29(5): 21-26 (in Chinese).
陈美,刘希强,王猛. Symmetric Regularized Long Wave(SRLW)方程组的对称,精确解和守恒律. 量子电
子学报,2012, 29(1): 21-26.
[9]Molati, Motlatsi, and Chaudry Masood Khalique. Symmetry classification and invariant solutions of the
variable coefficient BBM equation[J]. Applied Mathematics and Computation, 2013, 219(15): 7917-7922.
[10] Chao-Qing, Dai, and Zhou Guo-Quan. Exotic interactions between solitons of the (2+ 1)-dimensional
asymmetric Nizhnik–Novikov–Veselov system[J]. Chinese Physics, 2007, 16(5): 1201.
[11]Wang Ling, Dong Zhong-Zhou, and Liu Xi-Qiang.Symmetry Reductions, Exact Solutions and Conservation
Laws of Asymmetric Nizhnik–Novikov–Veselov Equation[J]. Communications in Theoretical Physics, 2008,
49(1): 1.
[12] Estévez P G, Leble S. A wave equation in 2+ 1: Painlevé analysis and solutions[J]. Inverse Problems, 1995,
11(4): 925.
[13] Tang, Xiao-yan, Lou Sen-yue , and Zhang Ying . Localized excitations in (2+ 1)-dimensional systems[J].
Physical Review E, 2002, 66(4): 046601.
[14] Lou Sen-yue, Tang Xiao-yan. Methods of Nonlinear Mathematical Physics, Beijing Science Press of China,
Beijing, China, 2006.
[15] Liu N, Liu X Q. Symmetries, new exact solutions and conservation laws of (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation [J]. Chinese Journal of Quantum Electromics (量子电子学报), 2008, 25(5): 546-552 (in Chinese).
刘娜,刘希强. (2+1)维Boiti-Leon-Manna-Pempinelli方程的对称、精确解及守恒律[J]. 量子电子学报,2008, 25(5): 546-552.
[16]Shi L M, Zhang L F, Meng H, et al. A method to construct Weierstrass elliptic function solution for nonlinear equations[J]. International Journal of Modern Physics B, 2011, 25(14): 1931-1939.
[17]Adem A R, Khalique C M. Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(9): 3465-3475.
[18] Moleleki L D, Johnpillai A G, Khalique C M. Symmetry Reductions and Exact Solutions of a Variable Coefficient (2+ 1)-Zakharov-Kuznetsov Equation[J]. Mathematical and Computational Applications, 2012, 17(2): 132.
|