[1] Muders J, Hesser J. Stable and Robust Geometric Self-Calibration for Cone-Beam CT Using Mutual Information [J]. IEEE Transactions on Nuclear Science, 2014, 61(1): 202-217.
[2] XuHong-kui, JiangMing-yan,YangMing-qiang. Registration of Multimodal Brain Medical Images Based on Improved Optical Flow Model[J]. Acta Electronica Sinica, 2012,40(3):525-529. (许鸿奎, 江铭炎, 杨明强. 基于改进光流场模型的脑部多模医学图像配准[J]. 电子学报,2012, 40(3):525-529.)
[3]Lowe David G. Object recognition from local scale-invariant features[C]. Proceedings of the International Conference on Computer Vision 2, ICCV, 1999: 1150–1157.
[4] Lowe David G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[5]Mahmoud H, Masulli F, Rovetta S. Feature-Based Medical Image Registration Using a Fuzzy Clustering Segmentation Approach[C]. Computational Intelligence Methods for Bioinformatics and Biostatistics. 9th International Meeting, CIBB 2012: 7845-7857.
[6]LiFang Wei, Lin Pan, Lin Lin, et al.. The Retinal Image Registration Based on Scale Invariant Feature[C]. 2010 3rd International Conference on Biomedical Engineering and Informatics, BMEI, 2010:639-643.
[7]Paganelli C, Peroni M, Riboldi M. Scale invariant feature transform in adaptive radiation therapy: a tool for deformable image registration assessment and re-planning indication[J]. Physics in Medicine and Biology, 2013, 58(02):287-299.
[8]Wang Jie-yu,Wang Jia-jun,Zhang Jing-ya.Non-rigid Medical Image Registration Based on Improved Optical Flow Method and Scale-invariant Feature Transform[J]. Journal of Electronics & Information Technology,2013, 35(5):1222-1228.(王婕妤,王加俊,张静亚. 基于改进光流场和尺度不变特征变换的非刚性医学图像配准[J]. 电子与信息学报,2013, 35(5):1222-1228.)
[9]Xu zhijing, Dai Huanlei, Cao Peipei. Processing of Sonar Image Based on Compressive Sensing[J]. Advanced Materials Research, 2011,301-303:719-723.
[10]Han Bing, Wu Feng, Wu Dapeng. Image representation by compressive sensing for visual sensor networks[J].
Journal of Visual Communication and Image Representation, 2010,21(4):325-333.
[11]Qiu Wei, Zhou Jianxiong, Zhao Hongzhong, et al.. Three-Dimensional Sparse Turntable Microwave Imaging Based on Compressive Sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2014,12(2):826-830.
[12]Chen Yuheng, Zhou Jiankang, Chen Xinhua, et al.. Research on Principle and Experimentation of High-Resolution Optical Compressive Spectral Imaging[J]. Acta Optica Sinica, 2014,340111005.(陈宇恒,周建康,陈新华等. 高分辨光学压缩光谱成像方法与实验研究[J]. 光学学报,2014,34(1):0111005-1—0111005-6.)
[13] Ling Xingxiu, Wei Zhihui, Xiao Liang et al.. Compressed sensing image reconstruction algorithm based on non-local regularization[J]. Systems Engineering and Electonics, 2013, 35(1):196-202.(李星秀,韦志辉,肖亮等.非局部正则化的压缩感知图像重建算法[J].系统工程与电子技术,2013, 35(1):196-202.)
[14]Yang Sa, Yang Chunling. Image Registration Algorithm Based on Sparse Random Projection and Scale-invariant Feature Transform[J]. Acta Optica Sinica, 2014, 341110001.(杨飒,杨春玲. 基于压缩感知与尺度不变特征变换的图像配准算法[J]. 光学学报,2014,34(11):1110001-1—1110001-6.)
[15] Emmanuel Candès; Justin Romberg; Terence Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. on Information Theory, February 2006, 52(2):489-509.
[16] Fang Hong, Zhang Quanbing, Wei Sui. Method of image reconstruction based on very sparse random projection[J]. Computer Engineering and Applications, 2007, 43(22):25-27.(方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27.)
[17] Evans A C. BrainWeb: Simulated Brain Database[DB/OL].[2014-12-112].http://www.bic.mni.mcgill. ca/brainweb. |