J4 ›› 2016, Vol. 33 ›› Issue (6): 718-723.
• Quantum Optics • Previous Articles Next Articles
ZHANG Qunyong
Received:
2015-09-16
Revised:
2016-09-03
Published:
2016-11-28
Online:
2016-11-28
CLC Number:
ZHANG Qunyong. Quantum secret sharing scheme based on four-particle entangled states[J]. J4, 2016, 33(6): 718-723.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Shamir A. How to share a secret [J]. Commun. ACM, 1979, 22: 612-613.[2] Hillery M, Bu?ek V, Berthiaume A. Quantum secret sharing [J]. Phys. Rev. A, 1999, 59: 1829-1834.[3] Cleve R, Gottesman D, Lo H K. How to Share a Quantum Secret [J]. Phys. Rev. Lett., 1999, 83: 648-651.[4] Bell B A, Markham D, Herrera-Mart?′D A et al. Experimental demonstration of graph-state quantum secret sharing [J]. Nat. Commun., 2014, 5: 5480.[5] Rahaman R, Parker M G. Quantum scheme for secret sharing based on local distinguishability [J]. Phys. Rev. A 91, 022330 (2015).[6] Wang L, Zou L, Zhao S M. A novel quantum secret sharing scheme with a trustful center [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31(5): 591-598 (in Chinese). [7] Song T T, Wen Q Y, Gao F et al. Participant attack and improvement to multiparty quantum secret sharing based on W states [J]. Int. J. Theor. Phys., 2013, 52: 293–301.[8] Han L F, Xu H F. Probabilistic and controlled teleportation of an arbitrary two-qubit state via one dimensional five-qubit cluster-class state [J]. Int. J. Theor. Phys., 2012, 51: 2540–2545.[9] Shi R H, Huang L S, Yang W, Zhong H. Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state [J]. Quantum Information Processing, 2011, 10: 53–61.[10] Wu J Q, Lin H Y. New quantum secret sharing scheme with unknown three-particle quantum state [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(3): 315-320 (in Chinese).[11] Fu Y Q, Chen H, Fang J X. Realization of quantum teleportation under control of a third party [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31 (2): 186-193 (in Chinese). [12] Karimipour V and Asoudeh M. Quantum secret sharing and random hopping: Using single states instead of entanglement [J]. Phys. Rev. A, 2015, 92: 030301.[13] Maitra A, Joyee De S, Paul G, Pal A K. Proposal for quantum rational secret sharing [J]. Phys. Rev. A 92, 022305 (2015).[14] Yu Z B, Liu X Q. Quantum secret sharing protocol based on W states [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31 (5): 605-609 (in Chinese).[15] Zhang Q Y, Zhan Y B, Zhang L L, Ma P C. Schemes for splitting quantum information via tripartite entangled states [J]. Int. J. Theor. Phys., 2009, 48: 3331-3338.[16] Zhan Y B, Zhang Q Y, Wang Y W. Schemes for splitting quantum information with four-particle genuine entangled states [J]. Commun. Theor. Phys., 2010, 53: 847-851.[17] Verstraete F, Dehaene J, Moor B De, Verschelde H. Four qubits can be entangled in nine different ways [J]. Phys. Rev. A, 2002, 65: 052112.[18] Yeo Y and Chua W K. Teleportation and Dense Coding with Genuine Multipartite Entanglement [J]. Phys. Rev. Lett., 2006, 96: 060502.[19] Zhang Q Y. Quantum secret sharing of single-qubit state via tripartite entangled states [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2012, 29 (4): 421-426 (in Chinese).[20] Huang Y F, Liu B H, Peng L, Li Y H, Li L, Li C F, Guo G C. Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state [J]. Nat. commun., 2011, 2: 546.[21] Gao W B, Lu C Y, Yao X C, Xu P, Gühne O, Goebel A, Chen Y A, Peng C Z, Chen Z B, Pan J W. Experimental demonstration of a hyper-entangled ten-qubit Schr?dinger cat state[J]. Nat. Phys., 2010, 6: 331-334.[22] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W. Quantum teleportation of multiple degrees of freedom of a single photon [J]. Nature, 2015, 5 1 8:516-519. |
[1] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[2] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[3] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[4] | JIA Wei , ZHANG Qiangqiang , BIAN Yuxiang , LI Wei . Research on the upper bound of collective attack in E91-QKD [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 407-414. |
[5] | CAO Rui , YUAN Chengzhi , SHEN Si , ZHANG Zichang , FAN Yunru , LI Jiarui , LI Hao , YOU Lixing , ZHOU Qiang , WANG Zizhu ∗. Optimized detection of maximally entangled time-bin qutrits [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 85-94. |
[6] | TANG Shibiao ∗ , LI Zhi , ZHENG Weijun , ZHANG Wansheng , GAO Song , LI Yalin , CHENG Jie , JIANG Lianjun . Research on anti-dead time attack scheme for quantum key distribution system [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 95-103. |
[7] | RUAN Zhiqiang, ZHANG Lei, ZHAO Xinyu, JIANG Xingfang ∗. Analysis of negative dispersion characteristics of a novel circular doped photonic crystal fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 133-138. |
[8] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[9] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[10] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[11] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[12] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[13] | ZHAO Liangyuan , ∗ , CAO Lingyun , LIANG Hongyuan , WEI Zheng , WU Qianjun , QIAN Jianlin , HAN Zhengfu ∗. Research on wavelength-multiplexed quantum key distribution based on different optical fibers [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 776-785. |
[14] | ZHANG Rui , MEI Dajiang , ∗ , SHI Xiaotu , , MA Rongguo , , ZHANG Qingli , ∗ , DOU Renqin , , LIU Wenpeng , . Research progress of dislocation of YAG crystal [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 687-706. |
[15] | WANG Jingjing, LIU Yujie, ZHENG Li∗. Quantum properties of macroscopic quantum state prepared by ultra-strong coupling cavity opto-mechanical system [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 598-604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||