[1] Horodecki R, Horodecki P, Horodecki M et al. Quantum entanglement [J]. Rev. Mod. Phys, 2009, 81(2): 865-931.[2] Raimond J, Brune M, and Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity [J]. Rev. Mod. Phys, 2001, 73, 565.[3] Braunstein S L and Loock P. Quantum information with continuous variables [J]. Rev. Mod. Phys, 2005, 77, 513.[4] Niemczyk T, Deppe F, Huebl H et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime [J]. Nature Phys, 2010, 6, 772 -776.[5] Schoelkopf R J and Girvin S M. Wiring up quantum systems [J]. Nature, 2008, 451: 664-669.[6] Nakamura Y and Yamamoto T. Microwave quantum photonics in superconducting circuits [J]. IEEE Photonics, 2012, 5(2): 0701406.[7] Pechal M, Huthmacher L, Eichler C et al. Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics [J]. Phys. Rev. X, 2014, 4(4): 041010(9).[8] Clarke J and Wilhelm F K. Superconducting quantum bits [J]. Nature, 2008, 453: 1031-1038.[9] Devoret M H, Girvin S and Schoelkopf R. Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be [J]. Annalen der Physik, 2007, 16: 767-779.[10] Wallra A, Schuster D I, Blais A et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics [J]. Nature, 2004, 431, 162-167.[11] Eichler C, Lang C, Fink J M et al. Observation of Entanglement between Itinerant Microwave Photons and a Superconducting Qubit [J]. Phys. Rev. Lett, 2012, 190(24): 240501(5).[12] Lang C, Eichler C, Steffen L et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies [J]. Nature Physics, 2013, 9: 345-348.[13] Klauder J R, McCall SL, and Yurke B. Squeezed states from nondegenerate four-wave mixers [J]. Phys. Rev. A, 1986, 33: 3204-3209.[14] Yurke B. Squeezed-state generation using a Josephson parametric amplifier [J]. OSA, 1987, 4(10): 1551-1557.[15] Ojanen T and Salo J. Possible scheme for on-chip element for squeezed microwave generation [J]. Phys. Rev. B, 2007, 75: 184508.[16] Zagoskin A M, Il'ichev E, McCutcheon M W et al. Controlled Generation of Squeezed States of Microwave Radiation in a Superconducting Resonant Circuit [J]. Phys. Rev. Lett, 2008, 101: 253602.[17] Castellanos-Beltran M A, Irwin K D, Hilton G C et al. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial [J]. Nature Phys, 2008, 4: 929-931.[18] Mallet F, Castellanos-Beltran M A, Ku H S et al. Quantum State Tomography of an Itinerant Squeezed Microwave Field [J]. Phys. Rev. Lett, 2011, 106: 220502.[19] Menzel E P, Deppe F, Mariantoni M et al. Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography [J]. Phys. Rev. Lett, 2010, 105(10): 100401(4).[20] Silva M P, Bozyigit D, Wallraff A et al. Schemes for the observation of photon correlation functions in circuit QED with linear detectors [J]. Phys. Rev. A, 2010, 82(4): 043804(12).[21] Bozyigit D, Lang C, Steffen L et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors [J]. Nature Physics, 2011, 7(2): 154-158.[22] Menzel E P, Candia R D, Deppe F et al. Path Entanglement of Continuous-Variable Quantum Microwaves [J]. Phys. Rev. Lett, 2012, 109(25): 250502(4).[23] Flurin E, Roch N, Mallet F et al. Generating Entangled Microwave Radiation Over Two Transmission Lines [J]. Phys. Rev. Lett, 2012, 109(18): 183901(5).[24] Yurke B, Kaminsky P G, Miller R E et al. Observation of 4.2-K Equilibrium-Noise Squeezing via a Josephson-Parametric Amplifier [J]. Phys. Rev. Lett, 1988, 60: 764.[25] Movshovich R, Yurke B, Kaminsky P G et al. Observation of Zero-Point Noise Squeezing via a Josephson Parametric Amplifier [J]. Phys. Rev. Lett, 1990, 65:1419.[26] Yamamoto T, Inomata K, Watanabe M et al. Flux-driven Josephson parametric amplifier [J]. Appl. Phys. Lett, 2008, 93: 042510.[27] Zhong L, Menzel E P, Candia R D et al. Squeezing with a flux-driven Josephson parametric amplifier [J]. New J. Phys, 2013, 15: 125013.[28] Castellanos-Beltran M A and Lehnert K W. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator [J]. Appl. Phys. Lett, 2007, 91: 083509.[29] Mutus J Y, White T C, Barends R et al. Strong environmental coupling in a Josephson parametric amplifier [J]. Appl. Phys. Lett, 2014, 104(26): 263513(4).[30] Zhou X, Schmitt V, Bertet P et al. High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array [J]. Phys. Rev. B, 2014, 89: 214517(7).[31] Bergeal N, Vijay R, Manucharyan V E et al. Analog information processing at the quantum limit with a Josephson ring modulator [J]. NATURE PHYSICS, 2010, 6: 296-302.[32] Bergeal N, Schackert F, Metcalfe M et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J]. NATURE, 2010, 465: 64-69.[33] Abdo B, Kamal A, and Devoret M. Non-degenerate, three-wave mixing with the Josephson ring modulator [J]. Phys. Rev. B, 2013, 87: 014508.[34] Roch N, Flurin E, Nguyen F et al. Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit [J]. Phys. Rev. Lett, 2012, 108: 1-5.[35] Pillet J D, Flurin E, Mallet F et al. A compact design for the Josephson mixer: the lumped element circuit [J]. Appl. Phys. Lett, 2015, 106: 222603.[36] Flurin E, Roch N, Pillet J D et al. Superconducting quantum node for entanglement and storage of microwave radiation [J]. Phys. Rev. Lett, 2015, 114:090503.[37] Li P B, Gao S Y, and Li F L. Engineering two-mode entangled states between two superconducting resonators by dissipation [J]. Phys. Rev. A, 2012, 86(1): 012318(5).[38] Li P B, Gao S Y, and Li F L. Robust continuous-variable entanglement of microwave photons with cavity electromechanics [J]. Phys. Rev. A, 2013, 88(4): 043802(7).[39] Homann E, Deppe F, Niemczyk T et al. A superconducting 180° hybrid ring coupler for circuit quantum electrodynamics [J]. Appl. Phys. Lett, 2010, 97(22): 222508(3).[40] Kim M S, Son W, Buzek V et al. Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement [J]. Phys. Rev. A, 2002, 65: 032323.[41] Mariantoni M, Menzel E P, Deppe F et al. Planck Spectroscopy and Quantum Noise of Microwave Beam Splitters [J]. Phys. Rev. Lett, 2010, 105(13): 133601(4).[42] Eichler C, Bozyigit D, Lang C et al. Observation of Two-Mode Squeezing in the Microwave Frequency Domain [J]. Phys. Rev. Lett, 2011, 107(11): 113601(5).[43] Shchukin E and Vogel W. Inseparability Criteria for Continuous Bipartite Quantum States [J]. Phys. Rev. Lett, 2005, 95: 230502.[44] Vidal G and Werner R F. Computable measure of Entanglement [J]. Phys. Rev. A, 2002, 65: 032314. |