J4 ›› 2017, Vol. 34 ›› Issue (1): 54-61.
• Quantum Optics • Previous Articles Next Articles
HUANG Jinsong , XU Zhonghui,ZHONG Yangwan
Received:
2015-09-28
Revised:
2015-12-09
Published:
2017-01-28
Online:
2017-01-28
CLC Number:
HUANG Jinsong , XU Zhonghui,ZHONG Yangwan. Quantum entanglement of two collocated atoms in a one-dimensional waveguide [J]. J4, 2017, 34(1): 54-61.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Reference:[1] Grover L K. Quantum mechanics helps in searching for a needle in a haystack [J]. Phys. Rev. Lett., 1997,79: 325.[2] Pereira S F, Ou Z Y, Kimble H J. Quantum communication with correlated nonclassical states[J]. Phys. Rev. A, 2000, 62: 042311.[3] Aspect A. Bell's inequality test: more ideal than ever [J]. Nature, 1999, 398: 189; Zou Yan. Entanglement properties in the system of atoms in Bell states interacting with the two-mode odd-even entangled coherent field[J], Chinese journal of quantum electronics (量子电子学报), 2009, 26(1): 69-75 (in chinese).[4] Julsgaard B, Kozhekin A, Polzik E S. Experimental long-lived entanglement of two macroscopic objects [J]. Nature, 2001, 413: 400; Han Yunxia, Hu Yaohua. Effect of linear modulation of atom-field coupling on atom entanglement [J]. Chinese journal of quantum electronics (量子电子学报), 2014, 31(6): 715-719 (in chinese); Bao li, Sachuerfu, Wu Shumei. Quantum entanglement of the binomial field interacting with the moving atoms in the multiphoton Tavis-Cummings model [J]. Chinese journal of quantum electronics (量子电子学报), 2010, 27(5): 580-585 (in chinese).[5] Turchette Q A, Wood C S, King B E, et al. Deterministic entanglement of two trapped ions[J]. Phys. Rev. Lett., 1998, 81: 3631.[6] Fleischhauer M, Yelin S F, Lukin M D. How to trap photons? Storing single-photon quantum states in collective atomic excitations [J]. Opt. Commun., 2000, 179: 395.[7] Blatt R and Wineland D. Entangled states of trapped atomic ions [J]. Nature, 2008, 453: 1008.[8] Stievater T H, Li X, Steel D G, et al. Rabi oscillations of excitons in single quantum dots [J]. Phys. Rev. Lett., 2001, 87: 133603.[9] Li X, Wu Y, Steel D G, et al. An all-optical quantum gate in a semiconductor quantum dot [J]. Science, 2003, 301: 809; Shi Peng, Li Jianjian, Chen Libo, et al. Dynamics of interaction between single photon and cavity-quantum dot system [J]. Chinese journal of quantum electronics (量子电子学报), 2012, 29(2): 165-170 (in chinese).[10] Steffen M, Ansmann M, Bialczak R C, et al. Measurement of the entanglement of two superconducting qubits via state tomography [J]. Science, 2006, 313: 1423; Ding Zhiyong, He Juan, Wu Tao. One step for generation of W-class states via superconducting quantum interference devices [J]. Chinese journal of quantum electronics (量子电子学报), 2010, 27(3): 314-318 (in chinese).[11] Shen J T, Fan S. Coherent photon transport from spontaneous emission in one-dimensional waveguides [J]. Opt. Lett., 2005, 30: 2001; ibid. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom [J]. Phys. Rev. A, 2009, 79: 023837; ibid. Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom [J]. Phys. Rev. A, 2009, 79: 023838; ibid. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits[J]. Phys. Rev. Lett., 2005, 95: 213001.[12] Roy D. Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures [J]. Phys. Rev. A, 2013, 87: 063819.[13] Chen Y L, Xiao Y F, Zhou X X, et al. Single-photon transport in a transmission line resonator interacting with two capacitively coupled Cooper-pair boxes [J]. J. Phys. B: At. Mol. Opt. Phys., 2008, 41: 175503.[14] Zhou L, Gong Z R, Liu Y X, et al. Controllable scattering of a single photon inside a one-dimensional resonator waveguide [J]. Phys. Rev. Lett., 2008, 101: 100501; Zhou L, Dong H, Liu Y X, et al. Quantum supercavity with atomic mirrors [J]. Phys. Rev. A, 2008, 78: 063827; Liao J Q, Gong Z R, Zhou L, et al. Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities [J]. Phys. Rev. A, 2010, 81: 042304. [15] Gonzalez-Tudela A, Martin-Cano D, Moreno E, et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides [J]. Phys. Rev. Lett., 2011, 106: 020501.[16] Chen G Y, Lambert N, Chou C H, et al. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement [J]. Phys. Rev. B, 2011, 84: 045310.[17] Chen G Y, Chen Y N. Correspondence between entanglement and Fano resonance of surface plasmons [J]. Opt. Lett., 2012, 37: 4023.[18] Cheng M T, Ma X S, Luo Y Q, et al. Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits [J]. Appl. Phys. Lett., 2011, 99: 223509.[19] Chen G Y, Li C M, Chen Y N. Generating maximum entanglement under asymmetric couplings to surface plasmons [J]. Opt. Lett., 2012, 37: 1337.[20] Chen Y N, Chen G Y, Chuu D S, et al. Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics [J]. Phys. Rev. A, 2009, 79: 033815.[21] Chen W, Chen G Y, Chen Y N. Coherent transport of nanowire surface plasmons coupled to quantum dots [J]. Opt. Expr., 2010, 18: 10360.[22] Chen G Y, Liu M H, Chen Y N. Scattering of microwave photons in superconducting transmission-line resonators coupled to charge qubits [J]. Phys. Rev. A, 2014, 89: 053802.[23] Wootters W K. Entanglement of formation of an arbitrary state of two qubits [J]. Phys. Rev. Lett., 1998, 80: 2245. |
[1] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[2] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[3] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[4] | JIA Wei , ZHANG Qiangqiang , BIAN Yuxiang , LI Wei . Research on the upper bound of collective attack in E91-QKD [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 407-414. |
[5] | CAO Rui , YUAN Chengzhi , SHEN Si , ZHANG Zichang , FAN Yunru , LI Jiarui , LI Hao , YOU Lixing , ZHOU Qiang , WANG Zizhu ∗. Optimized detection of maximally entangled time-bin qutrits [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 85-94. |
[6] | TANG Shibiao ∗ , LI Zhi , ZHENG Weijun , ZHANG Wansheng , GAO Song , LI Yalin , CHENG Jie , JIANG Lianjun . Research on anti-dead time attack scheme for quantum key distribution system [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 95-103. |
[7] | RUAN Zhiqiang, ZHANG Lei, ZHAO Xinyu, JIANG Xingfang ∗. Analysis of negative dispersion characteristics of a novel circular doped photonic crystal fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 133-138. |
[8] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[9] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[10] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[11] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[12] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[13] | ZHAO Liangyuan , ∗ , CAO Lingyun , LIANG Hongyuan , WEI Zheng , WU Qianjun , QIAN Jianlin , HAN Zhengfu ∗. Research on wavelength-multiplexed quantum key distribution based on different optical fibers [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 776-785. |
[14] | ZHANG Rui , MEI Dajiang , ∗ , SHI Xiaotu , , MA Rongguo , , ZHANG Qingli , ∗ , DOU Renqin , , LIU Wenpeng , . Research progress of dislocation of YAG crystal [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 687-706. |
[15] | WANG Jingjing, LIU Yujie, ZHENG Li∗. Quantum properties of macroscopic quantum state prepared by ultra-strong coupling cavity opto-mechanical system [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 598-604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||