[1] Bennett C H, Brassard G.Quantum cryptography: Public key distribution and coin tossing [C]. Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, 1984: 175-179.[2] Mayers D, Yao C.Quantum cryptography with imperfect apparatus [C] Proceedings of the 39th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, 1998: 503–509.[3] Brassard G, Lutkenhaus N, Mor T, Sanders B C.Limitations on practical quantum cryptography [J].Phys. Rev. Lett, 2000, 85(6):1330[4] Sun S H, Liang L M.Experimental demonstration of an active phase randomization and monitor module for quantum key distribution [J].Appl. Phys. Lett, 2012, 101(07):1107[5] Makarov V, Skaar J.Faked state attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols [J].Quantum Infor. Comput, 2007, 02(2):262-266[6] Zhao Y, Fung C H F, Qi B, Chen C, Lo H K.Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems [J].Phys. Rev. A, 2008, 78(04):2333[7] Makarov V.Controlling passively quenched single photon detectors by bright light[J].New J. Modern Opt, 2009, 11(06):5003[8] Lo H K, Curty M, Qi B.Measurement-device-independent quantum key distribution[J].Phys. Rev. Lett, 2012, 108(13):503[9] Du Y N.Analysis on quantum bit error rate in measurement device independent quantum key distribution using weak coherent states [J].物理学报, 2015, 64,11:301[10] Ma X, Razavi M.Alternative schemes for measurement-device-independent quantum key distribution[J].Phys. Rev. A, 2012, 86(06):2319[11] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, JiangX, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q, Pan J W.Field test of measurement-device-independent quantum key distribution [C] IEEE J. Select. Topics Quantum Electron, 2015 21 6600407[12] Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y, Han Z F.Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources [J].Phys. Rev. A, 2013, 88,05395[13] Wang Y, Bao W S, Li H W, Zhou C, Li Y Chin.Security of a practical semi-device-independent quantum key distribution protocol against collective attacks[J].Phys. B, 2014, 23(08):303[14] Zhou Y Y.A measurement-device-independent quantum key distribution protocol with a heralded single photon source [J].Optoeletronics Letters, 2016, 12(2):148-151[15] Wang Q, Wang X B.An efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon source[J].Phys. Rev. A, 2013, 88(05):2332[16] Li M, Zhang C M, Yin Z Q, Chen W, Wang S, Guo G C, Han Z F.Measurement-device-independent quantum key distribution with modified coherent state [J].Opt. Lett, 2014, 39,880[17] Yin Z Q, Han Z F, Sun F W, Guo G C.Decoy state quantum key distribution with modified coherent state [J].Phys. Rev. A, 2007, 76(01):4304[18] Liu D, Pei C X, Quan D X, Han B B Zhao N.New decoy state quantum key distribution for increasing the security communication distance[J].西安电子科技大学学报, 2010, 37(1):13-17[19] Ma X F, Qi B, Zh Y, Lo H K.Practical decoy state for quantum key distribution[J].Phys. Rev, A, 2005, 72(01):2326[20] Sun S H, Gao M, Li C Y, Liang L M.Practical decoy state measurement-device-independent quantum key distribution [J].Phys. Rev. A, 2013, 8705,2329[21] Jiang H D, Gao M.A global estimation of the lower bound of the privacy amplification term for decoy-state quantum key distribution [J].arXiv, 2015, 1502(04):427 |