Chinese Journal of Quantum Electronics
Previous Articles Next Articles
SONG Lingling,LI Yan*
Published:
2017-09-28
Online:
2019-06-13
SONG Lingling,LI Yan*. Entanglement sudden death of decohered hybrid entangled system[J]. Chinese Journal of Quantum Electronics.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Yu T, Eberly J H. Qubit disentanglement and decoherence via dephasing [J]. Physical Review B, 2003, 68(16): 165322. [2] Yu T, Eberly J H. Sudden death of entanglement: Classical noise effects [J]. Optics Communications, 2006, 264(2): 393-402. [3] Salles A, de Melo F, Almeida M P, et al. Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment [J]. Physical Review A, 2008, 78(2): 022322. [4] Laurat J, Choi K S, Deng H, et al. Heralded entanglement between atomic ensembles: Preparation, decoherence, and scaling [J]. Physical Review Letters, 2007, 99(18): 180504. [5] Yu T, Eberly J H. Finite-time disentanglement via spontaneous emission [J]. Physical Review Letters, 2004, 93(14): 140404. [6] Paz J P, Roncaglia A J. Dynamics of the entanglement between two oscillators in the same environment [J]. Physical Review Letters, 2008, 100(22): 220401. [7] Man Z X, Xia Y J, An N B. Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals [J]. Physical Review A, 2012, 86(1): 012325. [8] Man Z X, Xia Y J, An N B. Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements [J]. Physical Review A, 2012, 86(5): 052322. [9] Man Z X, Xia Y J, An N B. Entanglement dynamics for a six-qubit model in cavity QED [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(15): 155501. [10] Aolita L, Chaves R, Cavalcanti D, et al. Scaling laws for the decay of multiqubit entanglement [J]. Physical Review Letters, 2008, 100(5): 501-504. [11] Man Z X, Zhang J Y, Su F, et al. Entanglement dynamics of multiqubit system in Markovian and non-Markovian reservoirs [J]. The European Physical Journal D, 2010, 58(1): 147-151. [12] Man Z X, Xia Y J, An N B. Entanglement measure and dynamics of multiqubit systems: Non-Markovian versus Markovian and generalized monogamy relations [J]. New Journal of Physics, 2010, 12(3): 033020. [13] Man Z X, Xia Y J, An N B. The transfer dynamics of quantum correlation between systems and reservoirs [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44(9): 095504. [14] Jakub S P B. Two-mode squeezed vacuum state coupled to the common thermal reservoir [J]. Journal of Physics A: Mathematical and General, 2004, 37(15): L173. [15] Isar A. Entanglement dynamics of two-mode Gaussian systems in a two-reservoir model [J]. Physica Scripta, 2014, T160: 014019. [16] van Enk S J. Decoherence of multidimensional entangled coherent states [J]. Physical Review A, 2005, 72(2): 022308. [17] Lastra F, Romero G, López C E, et al. Entangled coherent states under dissipation [J]. Optics Communications, 2010, 283(19): 3825-3829. [18] Andersen U L, Neergaard-Nielsen J S, van Loock P, et al. Hybrid discrete- and continuous-variable quantum information [J]. Nature Physics, 2015, 11:713-719. [19] Takeda S, Furusawa A. Optical Hybrid Quantum Information Processing [M]. Tokyo , Japan: Springer, 2016: 439-458. [20] Nagali E, Sciarrino F. Generation of hybrid polarization-orbital angular momentum entangled states [J]. Optics Express, 2010, 18(17): 18243-18248. [21]Li Y, Jing H, Zhan M-S. Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(9): 2107–2113. [22] Morin O, Huang K, Liu J, et al. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits [J]. Nature Photonics, 2014, 8(7): 570-574. [23] Jeong H, Zavatta A, Kang M, et al. Generation of hybrid entanglement of light [J]. Nature Photonics, 2014, 8(7): 564-569. [24] Kwon H, Jeong H. Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state [J]. Physical Review A, 2015, 91(1): 012340 [25] Pramanik T, Adhikari S, Majumdar A S, et al. Information transfer using a single particle path-spin hybrid entangled state [J]. Physics Letters A, 2010, 374(9): 1121-1125. [26] Sun Y, Wen Q Y, Yuan Z. High-efficient quantum key distribution based on hybrid entanglement [J]. Optics Communications, 2011, 284(1): 527-530. [27] Wang C, Zhang Y, Zhang R. Entanglement puri?cation based on hybrid entangled state using quantum-dot and microcavity coupled system [J]. Optics Express, 2011, 19 (25): 25685-25695. [28] Sheng Y B, Zhou L, Long G L. Hybrid entanglement purification for quantum repeaters [J]. Physical Review A, 2013, 88(2): 022302. [29] Costanzo L S, Zavatta A, Grandi S, et al. Experimental hybrid entanglement between quantum and classical states of light [J]. International Journal of Quantum Information, 2014, 12(7): 1560015. [30]Kreis K, van Loock P. Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement [J]. Physical Review A, 2012, 85(3): 032307. [31] Zhang Yongde. Principles of Quantum Information Physics(量子信息物理原理) [M]. Beijing: Science Press, 2006. [32] Wootters W K. Entanglement of formation of an arbitrary state of two qubits [J]. Physical Review Letters, 1998, 80(10): 2245-2248. |
[1] | CHEN Liying , HUANG Kun , WANG Qi , YAN Shinong . Design of an integrated vibration detection module based on diamond NV color centers [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 500-509. |
[2] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[3] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[4] | LI Yan , . Correlation properties of Bose⁃Fermi mixture with one⁃dimensional strong interaction [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 528-540. |
[5] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[6] | SUN Yishi , SUN Yi . Parameter prediction of classical-quantum signals co-fiber transmission system based on BP neural network [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 546-559. |
[7] | QI Zhiming , LIANG Wenyao . Influence of beam polarizations on holographic fabrication of compound photonic crystals [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447-457. |
[8] | HE Yefeng , , LI Lina ∗ , BAI Qian , CHEN Sihao , QIANG Yuwei . Quantum key distribution of detector’s dead time in heralded single photon source [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 112-119. |
[9] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[10] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[11] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[12] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[13] | WU Qiong, MA Lei ∗. A quantum image edge detction algorithm based on LoG operator [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 720-727. |
[14] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[15] | ZHOU Xiantao, JIANG Yinghua ∗ , GUO Chenfei, ZHAO Ning, LIU Biao. Quantum secure direct communication protocol based on mixture of GHZ particles and single photon [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 768-775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||