[1] O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737–740. [2] Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells [J]. Acc. Chem. Res., 2009, 42(11): 1819–1826. [3] Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. J. Am. Chem. Soc., 2008, 130(18): 5856–5857. [4] Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells [J]. ACS Nano, 2010, 4(10): 6203–6211. [5] Brennan L J, Byrne M T, Bari M, et al. Carbon nanomaterials for dye-sensitized solar cell applications: A bright future [J]. Adv. Energy Mater., 2011, 1(4): 472–485. [6] Das S, Sudhagar P, Verma V, et al. Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells [J]. Adv. Funct. Mater., 2011, 21(19): 3729–3736. [7] Xia J, Chen L, Yanagida S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell [J]. J. Mater. Chem., 2011, 21(12): 4644–4649. [8] Xue Y, Liu J, Chen H, et al. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells [J]. Angew. Chem., 2012, 51(48): 12124–12127. [9] Xiao F, Yuan S, Huang Z, et al. Numerical simulation for polymer/fullerene bulk heterojunction solar cells [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(3): 371–377 (in Chinese). [10] Takahashi N, Sawada T, Nakamura T. Preparation of pyrite thin films by atmospheric pressure chemical vapor deposition using FeCl3 and CH3CSNH2 [J]. J. Mater. Chem., 2000, 10(10): 2346–2348. [11] Kirkeminde A, Scott R, Ren S Q. All inorganic iron pyrite nano-heterojunction solar cells [J]. Nanoscale, 2012, 4(24): 7649–7654. [12] Huang Q H, Ling T, Qiao S Z, et al. Pyrite nanorod arrays as an efficient counter electrode for dye-sensitized solar cells [J]. J. Mater. Chem. A, 2013, 1(38): 11828–11833. [13] Wei Z, Qiu Y C, Chen H N, et al. Magnetic-field-assisted aerosol pyrolysis synthesis of iron pyrite sponge-like nanochain networks as cost-efficient counter electrodes in dye-sensitized solar cells [J]. J. Mater. Chem. A, 2014, 2(15): 5508–5515. [14] Xu J, Xue H, Yang X, et al. Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells [J]. Small, 2014, 10 (22): 4754–4759. [15] Shukla S, Loc N H, Boix P, et al. Iron pyrite thin film counter electrodes for dye-sensitized solar cells: High efficiency for iodine and cobalt redox electrolyte cells [J]. ACS Nano, 2014, 8(10): 10597–10605. [16] Wang Y C, Wang D Y, Jiang Y T, et al. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells [J]. Angew. Chem. Int. Ed., 2013, 52(26): 6694–6698. [17] Samad L, Caba?n-Acevedo M, Shearer M J, et al. Direct chemical vapor deposition synthesis of phase-pure iron pyrite (FeS2) thin films [J]. Chem. Mater., 2015, 27(8): 3108−3114. [18] Wang S, Dong W, Fang X, et al. Enhanced electrocatalytic activity of vacuum thermal evaporated CuxS counter electrode for quantum dot-sensitized solar cells [J]. Electrochim Acta, 2015, 154(2015): 47–53. [19] Wang S M, Dong W W, Tao R H, et al. Optimization of single-crystal rutile TiO2 nanorod arrays based dye-sensitized solar cells and their electron transport properties[J]. J. Power Sources, 2013, 235(2013): 193–201. [20] Dao V, Kim S, Choi H, Kim J, et al. Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode[J]. J. Phys. Chem., 2011, 115(51): 25529–25534. [21] Popov A I, Geske D H. Studies on the chemistry of halogen and of polyhalides. XIII. Voltammetry of iodine species in acetonitrile[J]. J. Am. Chem. Soc., 1958, 80(6): 1340–1352. [22] Kavan L, Yum J H, Nazeeruddin M K, et al. Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells [J]. ACS Nano, 2011, 5(11): 9171–9178. [23] Wang L, Wu M, Gao Y, et al. Highly catalytic counter electrodes for organic redox couple of thiolate/disulfide in dye-sensitized solar cells[J]. Appl. Phys. Lett., 2011, 98(22): 221102. [24] He B, Meng X, Tang Q. Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells [J]. ACS Appl. Mater. Interfaces, 2014, 6(7): 4812–4818. [25] Wang M, Anghel A M, Marsan B, et al. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2009, 131(44): 15976–15977. [26] Wu M X, Lin X, Wang T H, et al. Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes [J]. Energy Environ. Sci., 2011, 4(6): 2308–2315. [27] Wu M, Lin X, Hagfeldt A, Ma T. Low-cost molybdenum carbide and Tungsten carbide counter electrodes for dye-sensitized solar cells [J]. Angew. Chem. Int. Ed. 2011, 50(15): 3520–3524. |