J4 ›› 2017, Vol. 34 ›› Issue (6): 705-712.
• Quantum Optics • Previous Articles Next Articles
Received:
2016-04-29
Revised:
2016-05-19
Published:
2017-11-28
Online:
2017-12-11
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1]Zhu K D, Li W S.Electromagnetically induced transparency mediated by phonons in strongly coupled exciton–phonon systems[J].Appl. Phys. B, 2002, 75(8):861-864[2]Agarwal G S, Huang S.Electromagnetically induced transparency in mechanical effects of light[J].Phys. Rev. A, 2010, 81(4):041803-041803[3]Weis S, Rivi`ere R, Del′eglise S, et al.Optomechanically induced transparency[J].Science, 2010, 330(6010):1520-1523[4]Xiao Y, Yu Y F and Zhang Z M.Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble[J].Opt. Express, 2014, 22(15):17979-17989[5]Marquardt F, Chen J P, Clerk A A, et al.Quantum theory of cavity-assisted sideband cooling of mechanical motion[J].Phys. Rev. Lett., 2007, 99(9):093902-093902[6]Wilson-Rae I, Nooshi N, Dobrindt J, et al.Cavity-assisted backaction cooling of mechanical resonators[J].New J. Phys., 2008, 10(9):095007-095007[7]Mazzola L, Paternostro M.Distributing fully optomechanical quantum correlations[J].Phys. Rev. A, 2011, 83(6):062335-062335[8]Genes C, Vitali D, Tombesi P.Emergence of atom-light-mirror entanglement inside an optical cavity[J].Phys. Rev. A, 2008, 77(5):050307-050307[9]Palomaki T A, Harlow J W, et al.Coherent state transfer between itinerant microwave fields and a mechanical oscillator[J].Nature, 2013, 495(7440):210-214[10]Wang Y D, Clerk A A.Using interference for high fidelity quantum state transfer in optomechanics[J].Phys. Rev. Lett., 2012, 108(15):153603-153603[11]Georgiades N P, Polzik E S, et al.Nonclassical excitation for atoms in a squeezed vacuum[J].Phys. Rev. Lett., 1995, 75(19):3426-3426[12]Alebachew E, Fesseha K.Interaction of a two-level atom with squeezed light[J].Opt. Commun., 2007, 271(1):154-161[13]Paternostro M.Engineering nonclassicality in a mechanical system through photon subtraction[J].Phys. Rev. Lett., 2011, 106(18):183601-183601[14]Vacanti G, Paternostro M, et al.Nonclassicality of optomechanical devices in experimentally realistic operating regimes[J].Phys. Rev. A, 2013, 88(1):013851-013851[15]Li J, Gr¨oblacher S, Paternostro M.Enhancing non-classicality in mechanical systems[J].New J. Phys., 2013, 15(3):033023-033023[16]Tan H, Bariani F, et al.Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation[J].Phys. Rev. A, 2013, 88(2):023817-023817[17]Brooks D W, Botter T, et al.Non-classical light generated by quantum-noise-driven cavity optomechanics[J].Nature, 2012, 488(7412):476-480[18]Safavi-Naeini A H, Gr¨oblacher S, et al.Squeezed light from a silicon micromechanical resonator[J].Nature, 2013, 500(7461):185-189[19]Verlot P, Tavernarakis A, et al.Backaction amplification and quantum limits in optomechanical measurements[J].Phys. Rev. Lett., 2010, 104(13):133602-133602[20]Gavartin E, Verlot P, Kippenberg T J.A hybrid on-chip optomechanical transducer for ultrasensitive force measurements[J].Nat. Nanotech., 2012, 7(8):509-514[21]Purdy T P, Yu P L, et al.Strong optomechanical squeezing of light[J].Phys. Rev. X, 2013, 3(3):031012-031012[22]Abramovici A, Althouse W E, et al.LIGO: The laser interferometer gravitational-wave observatory[J].Science, 1992, 256(5055):325-333[23]Caves C M, Thorne K S, et al.On the measurement of a weak classical force coupled to a quantummechanical oscillatorI. Issues of principle[J].Rev. Mod. Phys., 1980, 52(2):341-341[24]Barish B C, Weiss R.LIGO and the Detection of Gravitational Waves[J].Phys. Today, 1999, 52(1):44-50[25]Mari A, Eisert J.Gently modulating optomechanical systems[J].Phys. Rev. Lett., 2009, 103(21):213603-213603[26]J¨ahne K, Genes C, et al.Cavity-assisted squeezing of a mechanical oscillator[J].Phys. Rev. A, 2009, 79(6):063819-063819[27]Seok H, Buchmann L F, et al.Generation of mechanical squeezing via magnetic dipoles on cantilevers[J].Phys. Rev. A, 2012, 85(3):033822-033822[28]Clerk A A, Marquardt F, Jacobs K.Back-action evasion and squeezing of a mechanical resonator using a cavity detector[J].New J. Phys., 2008, 10(9):095010-095010[29]Asjad M, Agarwal G S, et al.Robust stationary mechanical squeezing in a kicked quadratic optomechanical system[J].Phys. Rev. A, 2014, 89(2):023849-023849[30]L¨u X Y, Liao J Q, et al.Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity[J].Phys. Rev. A, 2015, 91(1):013834-013834[31]Schliesser A, Arcizet O, et al.Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit[J].Nature Phys., 2009, 5(7):509-514[32]Vitali D, Gigan S, et al.Optomechanical entanglement between a movable mirror and a cavity field[J].Phys. Rev. Lett., 2007, 98(3):030405-030405[33]Li M, Pernice W H P, Tang H X.Broadband all-photonic transduction of nanocantilevers[J].Nat. nanotech., 2009, 4(6):377-382[34]Rips S, Kiffner M, et al.Steady-state negative Wigner functions of nonlinear nanomechanical oscillators[J].New J. Phys., 2012, 14(2):023042-023042[35] Li H, Chen Y, et al.Multichannel cavity optomechanics for all-optical amplification of radio frequency signals[J].Nat. Commun., 2012, 3(1):1091-1091[36]Jacobs K, Landahl A J.Engineering giant nonlinearities in quantum nanosystems[J].Phys. Rev. Lett., 2009, 103(6):067201-067201[37]Huang S, Agarwal G S.Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light[J].New J. Phys., 2009, 11(10):103044-103044[38]Schulze R J, Genes C, Ritsch H.Optomechanical approach to cooling of small polarizable particles in a strongly pumped ring cavity[J].Phys. Rev. A, 2010, 81(6):063820-063820 |
[1] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[2] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[3] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[4] | JIA Wei , ZHANG Qiangqiang , BIAN Yuxiang , LI Wei . Research on the upper bound of collective attack in E91-QKD [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 407-414. |
[5] | CAO Rui , YUAN Chengzhi , SHEN Si , ZHANG Zichang , FAN Yunru , LI Jiarui , LI Hao , YOU Lixing , ZHOU Qiang , WANG Zizhu ∗. Optimized detection of maximally entangled time-bin qutrits [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 85-94. |
[6] | TANG Shibiao ∗ , LI Zhi , ZHENG Weijun , ZHANG Wansheng , GAO Song , LI Yalin , CHENG Jie , JIANG Lianjun . Research on anti-dead time attack scheme for quantum key distribution system [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 95-103. |
[7] | RUAN Zhiqiang, ZHANG Lei, ZHAO Xinyu, JIANG Xingfang ∗. Analysis of negative dispersion characteristics of a novel circular doped photonic crystal fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 133-138. |
[8] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[9] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[10] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[11] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[12] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[13] | ZHAO Liangyuan , ∗ , CAO Lingyun , LIANG Hongyuan , WEI Zheng , WU Qianjun , QIAN Jianlin , HAN Zhengfu ∗. Research on wavelength-multiplexed quantum key distribution based on different optical fibers [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 776-785. |
[14] | ZHANG Rui , MEI Dajiang , ∗ , SHI Xiaotu , , MA Rongguo , , ZHANG Qingli , ∗ , DOU Renqin , , LIU Wenpeng , . Research progress of dislocation of YAG crystal [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 687-706. |
[15] | WANG Jingjing, LIU Yujie, ZHENG Li∗. Quantum properties of macroscopic quantum state prepared by ultra-strong coupling cavity opto-mechanical system [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 598-604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||