[1] Wang J. Precision measurement with atom interferometry [J]. Chinese Physics B, 2015, 24 (5): 93-102. [2] Wang J, Zhou L, Li R B, et al. Cold atom interferometers and their applications in precision measurements [J]. Frontiers of Physics, 2009, 4 (2): 179-189. [3] Li R B, Wang J, Zhan M S. Cold atom interferometers and their applications in space [J]. Physics(物理), 2008, 37 (9): 652-657 (in Chinese) [4] Zhou L, Long S T, Tang B, et al. Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer [J]. Physical Review Letters, 2015, 115 (1): 013004. [5] Schlippert D, Hartwig J, Albers H, et al. Quantum test of the universality of free fall[J]. Physical Review Letters, 2014, 112 (20): 203002. [6] Tarallo M G, Mazzoni T, Poli N, et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects [J]. Physical Review Letters, 2014, 113 (2): 023005. [7] Fixler J B, Foster G T, McGuirk J M, et al. Atom interferometer measurement of the Newtonian constant of gravity [J]. Science, 2007, 315 (5808): 74-77. [8] Rosi G, Sorrentino F, Cacciapuoti L, et al. Precision measurement of the Newtonian gravitational constant using cold atoms [J]. Nature, 2014, 510 (7506): 518-521. [9] Weiss D S, Young B C, Chu S. Precision measurement of ?/m Cs based on photon recoil using laser-cooled atoms and atom interferometry [J]. Applied Physics B-Laser and Optics, 1994, 59 (3): 217-256. [10] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A, 2013, 88(4): 043610. [11] Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 1999, 400 (6747): 849-852. [12] Zhou L, Xiong Z Y, Yang W, et al. Measurement of local gravity via a cold atom interferometer [J]. Chinese Physics Letters, 2011, 28 (1): 013701. [13] Zhou L, Xiong Z Y, Yang W, et al. Development of an atom gravimeter and of the 10-meter atom interferometer for precision gravity measurement [J]. General Relativity and Gravitation, 2011, 43 (7): 1931-1942. [14] McGuirk J M, Foster G T, Fixler J B, et al. Sensitive absolute-gravity gradiometry using atom interferometry [J]. Physical Review A, 2002, 65 (3): 033608. [15] Duan X C, Zhou M K, Mao D K, et al. Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method [J]. Physical Review A, 2014, 90 (2): 023617. [16] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-Atom interferometry [J]. Physical Review Letters, 2006, 97 (1): 010402. [17] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry [J]. Physical Review Letters, 2011, 107 (13): 133001. [18] Yao Z W, Lu S B, Li R B, et al. Continuous dynamic rotation measurements using a compact cold atom gyroscope [J]. Chinese Physics Letters, 2016, 33 (8): 083701. [19] Marino A M, Stroud C R. Phase-locked laser system for use in atomic coherence experiments [J]. Review of Scientific Instruments, 2008, 79 (1): 013104. [20] Appel J, MacRae A, Lvovsky A I. Versatile digital GHz phase lock for external cavity diode lasers [J]. Measurement Science and Technology, 2009, 20(5): 055302. [21] Xu Z X, Zhang X, Huang K K, et al. A digital optical phase-locked loop for diode lasers based on field programmable gate array [J]. Review of Scientific Instruments, 2012, 83 (9): 093104. [22] Yim S H, Lee S B, Kwon T Y, et al. Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry [J]. Applied Physics B-Laser and Optics, 2014, 115 (4): 491-495. [23] Schmidt M, Prevedelli M, Giorgini A, et al. A portable laser system for high-precision atom interferometry experiments [J]. Applied Physics B-Laser and Optics, 2011, 102 (1): 11-18. [24] Wang P, Li R B, Yan H, et al. Demonstration of a Sagnac-type cold atom interferometer with stimulated Raman transitions [J]. Chinese Physics Letters, 2016, 24 (1): 27-30. [25] Wang K, Yao Z W, Li R B, et al. Hybrid wide-band, low-phase-noise scheme for Raman lasers in atom interferometry by integrating an acousto-optic modulator and a feedback loop [J]. Applied Optics, 2016, 55 (5): 989-992. [26] Shahriar M S, Turukhin A V, Liptay T, et al. Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband [J]. Optics Communications, 2000, 184 (5): 457-462. [27] Xue H B, Feng Y Y, Wang X J, et al. Generation of Raman laser beams based on a sideband injection locking technique using a fiber electro-optical modulator [J]. Review of Scientific Instruments, 2013, 84 (4): 046104. [28] Bouyer P, Gustavson T L, Haritos K G, et al. Microwave signal generation with optical injection locking [J]. Optics Letters, 1996, 21 (18): 1502-1504. [29] Chen W L, Qi X H, Yi L, et al. Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser [J]. Optics Letters, 2008, 33 (4): 357-359. [30] Li R B, Zhou L, Wang J, et al. Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions [J]. Optics Communications, 2009, 282 (7): 1340-1344. |