[1]Burns W K, Hocker G B. End fire coupling between optical fibers and diffused channel waveguides[J]. Applied optics, 1977, 16(8): 2048-2050.
[2]Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J]. Japanese Journal of Applied Physics, 1989, 28(12A): L2112.[3]Nakamura S, Senoh M, Nagahama S, et al. InGaN-based multi-quantum-well-structure laser diodes[J]. Japanese Journal of Applied Physics, 1996, 35(1B): L74.
[4]Fasol G, Nakamura S. The blue laser diode: GaN based blue light emitters and lasers[J]. 1997.
[5]Jin S X, Li J, Li J Z, et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 76(5): 631-633.
[6]Ko Y H, Song J, Leung B, et al. Multi-color broadband visible light source via GaN hexagonal annular structure[J]. Scientific reports, 2014, 4: 5514.
[7]Sun C K, Liang J C, Wang J C, et al. Two-photon absorption study of GaN[J]. Applied Physics Letters, 2000, 76(4): 439-441.
[8]Watanabe N, Kimoto T, Suda J. The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515℃ [J]. 2008.
[9]Hui R, Taherion S, Wan Y, et al. GaN-based waveguide devices for long-wavelength optical communications[J]. Applied physics letters, 2003, 82(9): 1326-1328.
[10]Hui R, Wan Y, Li J, et al. III-nitride-based planar lightwave circuits for long wavelength optical communications[J]. IEEE journal of quantum electronics, 2005, 41(1): 100-110.
[11]Wang Q, Dahal R, Feng I W, et al. Emission and absorption cross-sections of an Er: GaN waveguide prepared with metal organic chemical vapor deposition[J]. Applied Physics Letters, 2011, 99(12): 121106.
[12]Dahal R, Ugolini C, Lin J Y, et al. Erbium-doped GaN optical amplifiers operating at 1.54 μm[J]. Applied Physics Letters, 2009, 95(11): 111109.
[13]Yuan J, Gao X, Yang Y, et al. GaN directional couplers for on-chip optical interconnect[J]. Semiconductor Science and Technology, 2017, 32(4): 045001.
[14]Li X, Wang Y, Hane K, et al. GaN-based integrated photonics chip with suspended LED and waveguide[J]. Optics Communications, 2018, 415: 43-47.
[15]Qiu Weiwei. Research on functional polymer optical fiber devices[D]. University of Science and Technology of China,2013.
[16]Han K, Su W, Zhong M, et al. Reversible Photocontrolled Swelling‐Shrinking Behavior of Micron Vesicles Self‐Assembled from Azopyridine‐Containing Diblock Copolymer[J]. Macromolecular Rapid Communications, 2008, 29(23): 1866-1870.
[17]Zimmerman G, Chow L Y, Paik U J. The photochemical isomerization of azobenzene1[J]. Journal of the American Chemical Society, 1958, 80(14): 3528-3531.
[18]Luo Yanhua. Fabrication and properties of photosensitive azopolymer waveguide gratings[D]. University of Science and Technology of China,2009.
[19]Dumont M L, Hosotte S, Froc G, et al. Orientational manipulation of chromophores through photoisomerization[C]. International Society for Optics and Photonics, 1994, 2042: 2-14.
[20]Yeh P, Taylor H F. Contradirectional frequency-selective couplers for guided-wave optics[J]. Applied optics, 1980, 19(16): 2848-2855.
[21]Ding J F, Zhang A P, Shao L Y, et al. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor[J]. IEEE Photonics Technology Letters, 2005, 17(6): 1247-1249.
[22]Rao yunjiang. Principle and application of fiber Bragg gratings[M]. Beijing: Science press, 2006. 144-147.
|