[1] Rogers A J. Polarization optical time1 domain reflectometry[J]. Electronics Letters, 1980, 16(13): 489-490. [2] Dakin J P, Pratt D J, Bibby G W, et al. Distributed optical fiber Raman temperature sensor using a semiconduetor light source and detector[J]. Electronics Letters, 1985, 21(13): 569-570. [3] Soto M A, Bolognini G, Pasqual F D. Simplex-coded BOTDA fiber sensor with 1m spatial resolution over a 50 km range[J]. Optics Letters, 2010, 35(2): 259-261. [4] Belal M, Cho Y T, Ibsen M. A temperature-compensated high spatial resolution distributed strain sensor[J]. Measurement Science and Technology, 2010, 21(1): 015204. [5] Toccafondo I, Nannipieri T, Signorini A. Raman distributed temperature sensing at CERN[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2182-2185. [6] Dominguez-Lopez A, Augulo-Vinuesa X, Lopez-Gil A. Non-local effects in dual-probe-sideband Brillouin optical time domain analysis[J]. Optics Express, 2015, 23(8): 10341-10352. [7] Amira Z, Mohamed B, Tahar E. Monitoring of temperature in distributed optical sensor: Raman and Brillouin spectrum[J]. Opitik, 2016,127(8): 4162-4164. [8] Gao Xiaodan, Peng Jiankun, Lv Bajuan. Optical fiber temperature sensor based Fabry-Perot coating interference[J]. Infrared and Laser Engineering(红外和激光工程), 2018, 47(1): 242-246 (in Chinese). [9] Walmsley I A. Quantum optics: Science and technology in a new light[J]. Science, 2015, 348(6234): 525-530. [10] Ji Yinghua, Huang Jianhua, Liu Yongmei. Achieving no decoherence quantum information tranfer by using exchanged decay between qubits[J]. Chinese Journal of Quantun Electronics(量子电子学报), 2014, 31(1): 40-46(in Chinese). [11] Peng Jiayin, Bai Mingqiang, Mo Zhiwen. Bidirectional quantum states sharing[J]. International Journal of Theoretical Physics, 2016, 55: 2481-2489. [12] Sisodia M, Shukla A, Thapliyal K. Design and experimental realization of an optimal scheme for teleportation of n-qubit quantum state[J]. Quantum Information Processing, 2017, 16(292): 1-19. [13] Cheng Kang, Zhou Yuanyuan, Wang Huan. Analysis of the performance of classical-quantum signals simultaneous transmission sharing a same fiber schemes[J]. Chinese Journal of Quantun Electronics(量子电子学报), 2019, 36(3): 336-341(in Chinese). [14] Vance R W C. One-photon electrodynamics in optical fiber with fluorophore systems. I. One-photon correspondence principle for electromagnetic field propagation in matter[J]. Journal of the Optical Society of America B-Optical Physics, 2007, 22(4): 928-941. [15] Vance R W C. One-photon electrodynamics in optical fiber with fluorophore systems. II. One-polariton propagation in matter and fibers from the one-photon correspondence principle[J]. Journal of the Optical Society of America B-Optical Physics, 2007, 22(4): 942-958. |