Chinese Journal of Quantum Electronics ›› 2019, Vol. 36 ›› Issue (6): 727-731.
• Quantum Optics • Previous Articles Next Articles
Received:
2019-03-18
Revised:
2019-08-29
Published:
2019-11-28
Online:
2019-11-19
Supported by:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330-1333. |
[2] | Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 071107. |
[3] | Chen Zhi Xin, Tang Zhi Lie, Liao Chang Jun, et al. Practical security problem of six states QKD protocol[J]. Acta Photonica Sinica(光子学报), 2006, 35(1): 126–129(in Chinese). |
[4] | Jiang M S, Sun S H, Li C Y, et al. Wavelength selected photon-number-splitting attack against “plug-and-play” quantum key distribution systems with Decoy States[J]. Physical Review A, 2012, 86(3): 032310. |
[5] | Wang X B. A decoy-state protocol for quantum cryptography with 4 intensities of coherent light[J]. Physical Review A, 2005, 72(1): 012322. |
[6] | Li HongXin, Chi YangGuang, Han Yu, et al. Research on PNS attack for decoy quantum key distribution scheme[J]. Journal of Cryptography(密码学报), 2018, 5(1): 1-12(in Chinese). |
[7] | Hwang W Y. Quantum key distribution with high loss: toward global secure communication[J]. Physical Review Letters, 2003, 91(5): 057901. |
[8] | Lo H K, Ma X, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 2005, 94(23): 230504. |
[9] | Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 2005, 94(23): 230503. |
[10] | Hu J Z, Wang X B. Reexamination of the decoy-state quantum key distribution with an unstable source[J]. Physical Review A, 2010, 82(1): 012331. |
[11] | Wang X B, Yang L, Peng C Z, et al. Decoy-state quantum key distribution with both source errors and statistical fluctuations[J]. New Journal of Physics, 2009, 11(7): 075006. |
[12] | Sun Wei, Yin Hualei, Sun Xiangxiang, et al. Non-orthogonal coding decoy quantum key distribution based on coherent superposition state[J]. Acta Physica Sinica(物理学报), 2016, 65(8): 080301(in Chinese). |
[13] | Yu Hao, Jia Wei, Zan Jiye, et al. A novel BB84-based quantum secret sharing with decoy states[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2019, 36(1): 348-353(in Chinese). |
[14] | Inamori H, N. Lütkenhaus, Mayers D. Unconditional security of practical quantum key distribution[J]. European Physical Journal D, 2007, 41(3): 599-627. |
[15] | Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503. |
[16] | Tamaki K, Lo H K , Fung C H F , et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 2012, 85(4): 042307. |
[17] | Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature (London) , 2018, 557: 400-403. |
[18] | Bennett C H, Brassard G. Quantum cryptography:public key distribution and coin tossing[C]. IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE Press, 1984: 175–179. |
[19] | Bennett C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(21): 3121-3124. |
[20] | Ma X F, Zeng P, Zhou H Y. Phase-matching quantum key distribution[J]. Physical Review X, 2018, 8(3): 031043. |
[1] | CHEN Liying , HUANG Kun , WANG Qi , YAN Shinong . Design of an integrated vibration detection module based on diamond NV color centers [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 500-509. |
[2] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[3] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[4] | LI Yan , . Correlation properties of Bose⁃Fermi mixture with one⁃dimensional strong interaction [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 528-540. |
[5] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[6] | SUN Yishi , SUN Yi . Parameter prediction of classical-quantum signals co-fiber transmission system based on BP neural network [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 546-559. |
[7] | QI Zhiming , LIANG Wenyao . Influence of beam polarizations on holographic fabrication of compound photonic crystals [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447-457. |
[8] | HE Yefeng , , LI Lina ∗ , BAI Qian , CHEN Sihao , QIANG Yuwei . Quantum key distribution of detector’s dead time in heralded single photon source [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 112-119. |
[9] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[10] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[11] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[12] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[13] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[14] | ZHOU Xiantao, JIANG Yinghua ∗ , GUO Chenfei, ZHAO Ning, LIU Biao. Quantum secure direct communication protocol based on mixture of GHZ particles and single photon [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 768-775. |
[15] | LI Tianxiu, SHI Lei ∗ , WANG Junhui, LI Jiahao. Prediction of atmospheric attenuation coefficient of quantum signal based on deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 786-794. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||