Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (2): 129-137.
• Review • Next Articles
LUO Jie1,2 HOU Zai-hong1,3 JING Xu1* WANG Zhen-dong1,2 AN Yan-yang1,2 QIN Lai-an1 WU Yi1,3 QIU Chen-xiang1,2
Received:
2019-08-19
Revised:
2019-09-09
Published:
2020-03-28
Online:
2020-03-28
Contact:
Jing -Xu
E-mail:xjing@mail.ustc.edu.cn
CLC Number:
LUO Jie, HOU Zai-hong, JING Xu WANG Zhen-dong, AN Yan-yang, QIN Lai-an WU Yi, QIU Chen-xiang, . Advances in Coherent Laser Wind Measurement Technology[J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 129-137.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Chen Zhen, Xin Fengxin, Wang Junyang, et al. Research on all fiber CW laser Doppler wind velocimetry [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2016, 33(2): 243-248 (in Chinese). [2] Ma Fumin, Chen Yong, Yang Zehou, et al. Latest development of Doppler wind lidar[J]. Laser and Optoelectronics Progress(激光与光电子学进展), 2019, 56(18): 1-20 (in Chinese). [3] Zhou Shiyu. Study of wind measurement based on laser[J]. Meteorological, Hydrological and Marine Instruments(气象水文海洋仪器), 2016, 33(2): 57-60 (in Chinese). [4] Zhou Yanzong, Wang Chong, Liu Yanping, et al. Research progress and application of coherent wind measuring lidar[J]. Laser and Optoelectronics Progress(激光与光电子学进展), 2019, 56(2): 9-26 (in Chinese). [5] Barber Z W. Very high range resolution lidars[J]. Encyclopedia of Modern Optics, 2018, 4(2): 430-443. [6] Shi Jinqian, Xue Junwen, Su Binghua, et al. Miniaturization of 1080 nm, 80 W continuous fiber lasers[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2017, 34(5): 570-573 (in Chinese). [7] Huffaker R M. Laser Doppler detection systems for gas velocity measurement[J]. Applied Optics, 1970, 9(5): 1026-1039. [8] Bilbro J W, Vaughan W W. Wind field measurement in the nonprecipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system[J]. Bulletin of the American Society, 1980, 59(9): 1095-1101. [9] Bilbro J W, Fichtl G, Fitzjarrald D, et al. Airborne Doppler lidar wind field measurements[J]. Bulletin of the American Meteorological Society, 1984, 65(4): 39-44. [10] Bilbro J W, Fitzjarrald D, Johnson S, et al. Airborne Doppler lidar measurements[J]. Applied Optics, 1986, 25(21): 3952-3960. [11] Manes K R. Analysis of the CO2 TEA laser[J]. Journal of Applied Physics, 1972, 43(12): 5073-5078. [12] Post M J, Richter R A, Hardesty R M, et al. National oceanic and atmospheric administration's (NOAA) pulsed, coherent, infrared Doppler lidar characteristics and data[C] Physics and Technology of Coherent, 1981, San Diego, United States, SPIE. [13] Werner C, Flamant P H, Reitebuch O, et al. Wind infrared Doppler lidar instrument[J]. Optical Engineering, 2001, 40(1): 115-125. [14] Kavaya M J, Henderson S W, Magee J R, et al. Remote wind profiling with a solid-state Nd:YAG coherent lidar system[J]. Optics Letters, 1989, 14(15): 776-778. [15] Sammy W H, Charley P H, James R M, et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho: YAG lasers[J]. Optics Letters, 1991, 16(10): 773-775. [16] Huffaker R M, Reveley P A. Solid-state coherent laser radar wind field measurement systems[J]. Pure and Applied Optics Journal of the European Optical Society Part A, 1999, 7(4): 863-873. [17] Proctor F, Hamilton D. Evaluation of fast-time wake vortex prediction models[C]. 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 2009, Orlando, Florida, United States, 344(1-10). [18] Prasad N S, Sibell R, Vetorino S, et al. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications[C]. Laser Radar Technology and Applications XX and Atmospheric Propagation XII, 2015, SPIE, 9465: 94650C(1-11). [19] Kameyama S, Ando T, Asaka K, et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Applied Optics, 2007, 46(11): 1953-1962. [20] Kameyama S, Ando T, Hirano Y, et al. Wind sensing demonstration of more than 30 km measurable range with a 1.5 μm coherent Doppler lidar which has the laser amplifier using Er,Yb: Glass planar waveguide[C]. Lidar Remote Sensing for Environmental Monitoring XIII, 2012, SPIE, 8526: 85260E(1-6). [21] Lee J, Yu J, Wong T, et al. Efficient Ho:LuLiF MOPA laser transmitter with tailored pulse width and output energy for space-based coherent wind lidar[C] Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America), 2019, AW4K.6. [22] Kopp F, Schwiesow R L, Werner C. Remote measurements of boundary-layer wind profiles using a CW Doppler lidar[J]. Journal of Climate and Applied Meteorology, 1984, 23(1): 148-154. [23] Karlsson C J, Olsson F A, Letalick D , et al. All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements[J]. Applied Optics, 2000, 39(21): 3716-3726. [24] Harris M, Constant G, Ward C. Continuous-wave bistatic laser Doppler wind sensor[J]. Applied Optics, 2001, 40(9): 1501-1506. [25] Pedersen A T, Abari C F, Mann J. An all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Optics Express, 2014, 22(21): 025880. [26] Pedersen A T, Abari C F, Mann J, et al. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar[J]. Journal of Physics: Conference Series, 2014, 524: 012004. [27] Abari C F, Pedersen A T, Dellwik E, et al. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Atmospheric Measurement Techniques Discussions, 2015, 8(4): 3729-3752. [28] Abari C F, Chu X, Michael H R, et al. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations[J]. Applied Optics, 2015, 54(30): 8999-9009. [29] Cheynet E, Jakobsen J B, Svardal B, et al. Wind coherence measurement by a single pulsed Doppler wind lidar[J]. Energy Procedia, 2016, 94: 462-477. [30] Witschas B, Rahm S, DöRnbrack A , et al. Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1371-1386. [31] Cheynet E, Jakobsen J B, et al. Assessing the potential of a commercial pulsed lidar for wind characterisation at a bridge site[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 161: 17-26. [32] Liu Yuan, Liu Jiqiao, Chen Weibiao. Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar[J]. Chinese Optical Letters, 2011, 9(9): 090604. [33] Zhu Xiaopeng, Liu Jiqiao, Diao Weifeng, et al. Study of coherent Doppler lidar system[J]. Infrared(红外), 2012, 33(2): 8-12(in Chinese). [34] Diao W, Zhang X, Liu J, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 2014, 12(7): 71-74. [35] Wu S, Yin J, Liu B, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[C]. Lidar Remote Sensing for Environmental Monitoring XIV. International Society for Optics and Photonics, 2014. [36] Wu S, Liu B, Liu J, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10): A762-A781. [37] Zhai Xiaochun, Wu Songhua, Liu Bingyi. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness[J]. Optics Express, 2017, 25(12): A515-A529. [38] Feng Changzhong, Wu Songhua, Liu Bingyi. Research on wind retrieval method of coherent Doppler lidar and experimental verification[J]. Chinese Journal of Lasers(中国激光), 2018, 45(4): 309-317(in Chinese). [39] Fan Qi, Zhu Keyun, Zheng Jiafeng, et al. Detection performance analysis of all-fiber coherent wind lidar under different weather types[J]. Chinese Journal of Lasers(中国激光), 2017, 44(2): 326-335(in Chinese). [40] Li Dongmei, Zheng Yongchao, Pan Jingyan, et al. Index system of coherence Doppler wind lidar [J]. Optical Technigue(光学技术), 2010, 36(6): 880-884(in Chinese). [41] Li Li, Wang Canzhao, Xie Yafeng, et al. Wind field inversion technique for scanning wind lidar[J]. China Optics(中国光学), 2013, 6(2): 251-258(in Chinese). [42] Feng Litian, Guo Hongqi, Chen Yong, et al. Experiment of all fiber Doppler lidar at 1.55 μm[J]. Infrared and Laser Engineering(红外与激光工程), 2012, 40(5): 844-847 (in Chinese). [43] Zhang Y. Noise modeling by the trend of each range gate for coherent Doppler LIDAR[J]. Optical Engineering, 2014, 53(6): 063109. [44] Bu Zhichao, Chen Siying, Zhang Yinchao, et al. Error modeling and analysis on wind speed and direction for 2 μm space based coherent Doppler LIDAR[J]. Journal of Infrared and Millimeter Waves (红外与毫米波学报), 2015, 34(4): 465-470(in Chinese). [45] Bai Xue, Guo Pan, Chen Siying, et al. Simulation in the time domain and time-frequency analysis for coherent Doppler wind lidar[J]. Chinese Journal of Lasers(中国激光), 2015, 42(1): 0114003 (in Chinese). [46] Wu Y, Guo P, Chen S, et al. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach[J]. Applied Optics, 2017, 56(10): 2705-2713. [47] Zhang Yinchao, Rui Xunbao, Guo Pan, et al. High power all-fiber laser with switchable pulsed and continuous operation modes for wind lidar[C]. Optical Materials for High-Power Lasers, 2019, SPIE, 11063: 110630O. [48] Shu Z R, Li Q S, He Y C, et al. Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications[J]. Applied Energy, 2016, 169: 150-163. |
[1] | LI Shichun , ∗ , HUANG Zuxin , SHI Dongdong , XIN Wenhui , , SONG Yuehui , , GAO Fei , , HUA Dengxin , ∗. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872-879. |
[2] | CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang∗. Research progress of NO2 differential absorption lidar technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580-592. |
[3] | ZHANG Qinwei, CAO Lianzhen∗, LIU Xia, YANG Yang, ZHAO Jiaqiang, LI Yingde. Entanglement degradation of photon entangled states in non-Kolmogorov atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 496-503. |
[4] | LENG Kun, YANG Yuntao, TAN Zhe, GONG Yanchun, WU Wenyuan∗. Evaluation method of laser atmospheric transmission effectiveness based on support vector machine [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 547-555. |
[5] | YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579. |
[6] | ZHOU Zhenglan, ZHOU Yuan, XU Huafeng, QU Jun∗. Research progress of the partially coherent beams with special correlation functions [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 615-632. |
[7] | Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. |
[8] | XI Fengjie, YANG Yi, JING Xu, DU Shaojun, XU Xiaojun. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. |
[9] | YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian, ∗. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392-408. |
[10] | WANG Yingjian, ∗, SHI Dongfeng, . Atmospheric Effects on Optical Imaging and Correction Techniques [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409-417. |
[11] | BO Yong, BIAN Qi, PENG Qinjun, XU Zuyan, WEI Kai, ZHANG Yudong, FENG Lu, XUE Suijian. Development of Sodium Beacon Laser [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 430-446. |
[12] | HU Shuai, ∗, LIU Lei, ∗, LIU Xichuan, GAO Taichang, . Progress of measurement techniques of multi-angle scattering properties of atmospheric particles [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 477-496. |
[13] | HUANG Yinbo, CAO Zhensong, ∗, LU Xingji, HUANG Jun, LIU Qiang, DAI Congming, HUANG Honghua, Zhu Wenyue, RAO Ruizhong, WANG Yingjian, . Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 497-505. |
[14] | QIANG Xiwen, ZONG Fei, ZHAI Shengwei, FENG Shuanglian, WU Min, CHANG Jinyong, ZHANG Zhigang, HU Yuehong. Simulating and Measuring of Atmospheric Turbulence in Laboratory [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 506-512. |
[15] | GUAN Zhongyin, LI Bao, QIAN Jiali, DENG Lunhua, XU Huailiang, . Study on formation of CN radical in mixture of nitrogen and methane [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 144-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||