[1] Miller S L. A production of amino acids under possible primitive Earth conditions [J]. Science, 1953, 117(117): 528-529.
[2] Clarke D W, Ferris J P. Chemical evolution on Titan: Comparisons to the prebiotic Earth [J]. Origins of Life and Evolution of the Biosphere, 1997, 27: 225-248.
[3] Lunine J I, Mckay C P. Surface-atmosphere interactions on Titan compared with those on the pre-biotic Earth [J]. Advances in Space Research, 1995, 15(3): 303-311.
[4] Raulin F, Bruston P, Coll P, et al. Exobiology on Titan [J]. Journal of Biological Physics, 1995, 20(1): 39-53.
[5] Raulin F, Brasse C, Poch O, et al. Prebiotic-like chemistry on Titan [J]. Chemical Society Reviews, 2012, 41(16): 5380-5393.
[6] Coustenis A, Jennings D E, Nixon C A, et al. Titan trace gaseous composition from CIRS at the end of the Cassini–Huygens prime mission [J]. Icarus, 2010, 207(1): 461-476.
[7] Torokova L, Watson J, Krcma F, et al. Gas chromatography analysis of discharge products in N2‐CH4 gas mixture at atmospheric pressure: Study of mimic Titan's atmosphere [J]. Contributions to Plasma Physics, 2015, 55(6): 470-480.
[8] Pintassilgo C D, Loureiro J. Production of hydrocarbons and nitriles using a afterglow plasma for simulation of Titan’s atmosphere [J]. Planetary and Space Science, 2009, 57(13): 1621-1630.
[9] Fujii T, Arai N. Analysis of N-containing hydrocarbon species produced by a CH4/N2 microwave discharge: Simulation of Titan’s atmosphere [J]. Astrophysical Journal, 1999, 519(2): 858-863.
[10] Jeilani Y A, Nguyen H T, Cardelino B H, et al. Free radical pathways for the prebiotic formation of xanthine and isoguanine from formamide [J]. Chemical Physics Letters, 2014, 598(598): 58-64.
[11] Gupta V P, Rawat P, Singh R N, et al. Formation of 2-imino-malononitrile and diaminomaleonitrile in nitrile rich environments: A quantum chemical study [J]. Computational and Theoretical Chemistry, 2012, 983: 7-15.
[12] Ferus M, Civis S, Mladek A, et al. On the road from formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between cyano radicals and formamide in a high-energy impact event [J]. Journal of the American Chemical Society, 2012, 134(51): 20788-20796.
[13] Ferus M, Nesvorny D, Sponer J, et al. High-energy chemistry of formamide: A unified mechanism of nucleobase formation [J]. Proceedings of the National Academy of Sciences, 2015, 112(3): 657-662.
[14] Ferus M, Michalcikova R, Shestivska V, et al. High-energy chemistry of formamide: A simpler way for nucleobase formation [J]. Journal of Physical Chemistry A, 2014, 118(4): 719-736.
[15] Jeilani Y A, Nguyen H T, Newallo D, et al . Free radical routes for prebiotic formation of DNA nucleobases from formamide [J]. Physical Chemistry Chemical Physics, 2013, 15(48): 21084-21093.
[16] Tan Xiaofeng, Dong Feng, Chen Hong, et al . Preparation of CN radical and LIF detection by dc discharge [J]. Acta Physico-Chimica Sinica(物理化学学报), 1998, 14(7): 664-668(in Chinese).
[17] Li P, Fan W Y. The CN free radical in acetonitrile discharges [J]. Journal of Applied Physics, 2003, 93(12): 9497-9502.
[18] Dilecce G, Ambrico P F, Scarduelli G, et al. CN(B2Σ+) formation and emission in a N2-CH4 atmospheric pressure dielectric barrier discharge [J]. Plasma Sources Science & Technology, 2009, 18(1): 127-130.
[19] Grigorian G, Cenian A. Formation and excitation of CN molecules in He–CO–N2–O2 discharge plasmas [J]. Plasma Chemistry and Plasma Processing, 2011, 31(2): 337-352.
[20] Ram R S, Wallace L, Bernath P F. High resolution emission spectroscopy of the A2Σ+- X2Σ+ (red) system of 12C14N[J]. Journal of Molecular Spectroscopy, 2010, 263(1): 82-88.
[21] Western C M and Billinghurst B E. Automatic and Semi-Automatic Assignment and Fitting of Spectra with PGOPHER[J]. Physical Chemistry Chemical Physics, 2019, 21(26):13986 – 13999.
[22] Yang Xiaofei, Wang Gao, Qiu Xuanbing, et al. Study on B2Σ+- X2Σ+ spectra and temperature of CN radicals based on LIBS [J]. Laser Technology(激光技术), 2019, 43(5): 719-732(in Chinese).
[23] Mazankova V, Torokova L, Krcma F, et al. The influence of CO2 admixtures on the product composition in a nitrogen-methane atmospheric glow discharge used as a prebiotic atmosphere mimic [J]. Origins of Life and Evolution of the Biosphere, 2016, 46(4): 1-8.
[24] Fleury B, Carrasco N, Gautier T, et al. Influence of CO on Titan atmospheric reactivity [J]. Icarus, 2014, 238: 221-229. |