[1] Bennett C H, Brassard G, Cr E Peau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895-1899.
[2] Lo H. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity[J]. Physical Review A, 2000, 62(1): 12313.
[3] Pati A K. Minimum classical bit for remote preparation and measurement of a qubit[J]. Physical Review A, 2000, 63(1): 14302.
[4] Bennett C H, Divincenzo D P, Shor P W, et al. Remote state preparation[J]. Physical Review Letters, 2001, 87(7): 77902.
[5] LI Pu, Man Zhongxiao, Xia Yunjie. Joint remote preparation of an arbitrary three-qubit state via generalized Bell states channel[J]. Acta Sinica Quantum Optica(量子光学学报), 2012, 18(2): 128-135(in Chinese).
[6] Wei J, Shi L, Ma L, et al. Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states[J]. Quantum Information Processing, 2017, 16(10): 1-12.
[7] Ma P, Chen G, Li X, et al. Efficient scheme for remote preparation of an arbitrary tripartite four-particle entangled state[J]. International Journal of Modern Physics B, 2018, 32(3): 1850023.
[8] Xue Y, Shi L, Da X, et al. Remote preparation of four-qubit states via two-qubit maximally entangled states[J]. Quantum Information Processing, 2019, 18(4): 1-16.
[9] Peters N A, Barreiro J T, Goggin M E, et al. Remote state preparation: arbitrary remote control of photon polarization[J]. Physical Review Letters, 2005, 94(15): 150502.
[10] Peng X, Zhu X, Fang X, et al. Experimental implementation of remote state preparation by nuclear magnetic resonance[J]. Physics Letters A, 2003, 306(5-6): 271-276.
[11] Liu W, Wu W, Ou B, et al. Experimental remote preparation of arbitrary photon polarization states[J]. Physical Review A, 2007, 76(2): 22308.
[12] Dheur M, Vest B, Devaux E L I S, et al. Remote preparation of single-plasmon states[J]. Physical Review B, 2017, 96(4): 45432.
[13] Peng J, Bai M, Mo Z. Bidirectional controlled joint remote state preparation[J]. Quantum Information Processing, 2015, 14(11): 4263-4278.
[14] Kui H, Jing W, Hao Y, et al. Multiparty-controlled remote preparation of two-particle state[J]. Communications in Theoretical Physics, 2009, 52(5): 848-852.
[15] Wei J, Shi L, Xu Z, et al. Probabilistic controlled remote state preparation of an arbitrary two-qubit state via partially entangled states with multi parties[J]. International Journal of Quantum Information, 2018, 16(1): 1850001.
[16] Chen W, Ma S, Qu Z. Controlled remote preparation of an arbitrary four-qubit cluster-type state[J]. Chinese Physics B, 2016, 25(10): 100304.
[17] Wang D, Zha X, Lan Q. Joint remote state preparation of arbitrary two-qubit state with six-qubit state[J]. Optics Communications, 2011, 284(24): 5853-5855.
[18] Hou K. Joint remote preparation of four-qubit cluster-type states with multiparty[J]. Quantum Information processing, 2013, 12(12): 3821-3833.
[19] Wu W, Liu W, Chen P, et al. Deterministic remote preparation of pure and mixed polarization states[J]. Physical Review A, 2010, 81(4): 42301.
[20] An N B, Bich C T, Van Don N. Deterministic joint remote state preparation[J]. Physics Letters A, 2011, 375(41): 3570-3573.
[21] Zhan Y. Deterministic remote preparation of arbitrary two-and three-qubit states[J]. Europhysics Letters, 2012, 98(4): 40005.
[22] Qu Z, Wu S, Wang M, et al. Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels[J]. Quantum Information Processing, 2017, 16(12): 1-25.
[23] Zhang P, Ma S, Gong L. Deterministic remote preparation via the χ state in noisy environment[J]. International Journal of Theoretical Physics, 2019,58(9): 2795-2809. |