Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (4): 392-408.
• Special Issue on Laser Propogation and Detection in Atmosphere • Previous Articles Next Articles
YU Jiayi1;2, LIN Shuqin1;2, XU Ying1;2, ZHU Xinlei3, WANG Fei3, CAI Yangjian1;2;3∗
Received:
2020-05-09
Revised:
2020-06-21
Published:
2020-07-28
Online:
2020-07-21
Contact:
Yangjian Cai
E-mail:yangjiancai@suda.edu.cn
CLC Number:
YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian, ∗. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392-408.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Jiang Huilin. The Technologies and Systems of Space Laser Communication (空间激光通信技术与系统) [M]. Beijing: |
National Defense Industry Press, 2010 (in Chinese). | |
[2] | Wang F, Yu J, Liu X, et al. Research progress of partially coherent beams propagation in turbulent atmosphere [J]. Acta |
Physica Sinica (物理学报), 2018, 67(18): 184203 (in Chinese). | |
[3] | Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: A review[J]. Progress in Electromagnetics |
Rresearch, 2015, 150: 123-143. | |
[4] | Hardy J W. Adaptive Optics for Astronomical Telescopes [M]. New York: Oxford University Press, 1998. |
[5] | Lukin V P, Fortes B V. Phase-correction of turbulent distortions of an optical wave propagating under conditions of strong |
intensity fluctuations [J]. Applied Optics, 2002, 41(27): 5616-5624. | |
[6] | Friberg A T, Sudol R J. Propagation parameters of gaussian Schell-model beams [J]. Optics Communications, 1982, 41(6): |
38 | 3-387. |
[7] | Deschamps J, Courjon D, Bulabois J. Gaussian Schell-model sources-An example and some perspectives [J]. Journal of the |
Optical Society of America, 1983, 73(3): 256-261. | |
[8] | Mitchell M, Chen Z, Shih M F, et al. Self-trapping of partially spatially incoherent light [J]. Physical Review Letters, 1996, |
77 | (3): 490-493. |
[9] | Mitchell M, Segev M, Coskun T H. Theory of incoherent solitons: Self-trapped spatially incoherent light beams [C]. Quantum |
Electronics Conference, 1998. | |
[10] | Akhmediev N, Kr´olikowski, Snyder A W. Partially coherent solitons of variable shape [J]. Physical Review Letters, 1998, |
81 | (21): 4632-4635. |
[11] | Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light [J]. Physical Review Letters, 1998, |
80 | (12): 2586-2589. |
[12] | Dubois F, Joannes L, Legros J C. Improved three-dimensional imaging with a digital holography microscope with a source of |
partial spatial coherence [J]. Applied Optics, 1999, 38(34): 7085-7094. | |
[13] | Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized Eikonal of partially coherent beams and its use in quantitative |
imaging [J]. Physical Review Letters, 2004, 93(6): 068103. | |
[14] | Wu G, Cai Y. Detection of a semirough target in turbulent atmosphere by a partially coherent beam [J]. Optics Letters, 2011, |
36 | (10): 1939-1941. |
[15] | Clark J N, Huang X, Harder R, et al. High-resolution three-dimensional partially coherent diffraction imaging [J]. Nature |
Communications, 2012, 3(8): 993. | |
[16] | Kagalwala K H, Di Giuseppe G, Abouraddy A F, et al. Bell’s measure in classical optical coherence [J]. Nature Photonics, |
20 | 12, 7(1): 72-78. |
[17] | Canc¸ado L G, Beams R, Jorio A, et al. Theory of spatial coherence in near-field Raman scattering [J]. Physical Review X, |
20 | 14, 4(3): 031054. |
[18] | Qian X F, Little B, Howell J C, et al. Shifting the quantum-classical boundary: Theory and experiment for statistically classical |
optical fields [J]. Optica, 2015, 2(7): 611-615. | |
[19] | Cai Y, Chen Y, Yu J, et al. Generation of partially coherent beams [J]. Progress in Optics, 2017, 62: 157-223. |
[20] | Chen Y H, Wang F, Cai Y J. Recent progress in modulating the spatial correlation functions of partiallycoherent beams [J]. |
Progress in Physics (物理学进展), 2015, 35(2): 51-73 (in Chinese). | |
[21] | Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: |
A review [J]. Journal of the Optical Society of America A, 2014, 31(9): 2083-2096. | |
[22] | Tamburini F, Anzolin G, Umbriaco G, et al. Overcoming the Rayleigh criterion limit with optical vortices [J]. Physical Review |
Letters, 2006, 97(16): 163903. | |
[23] | Wang H, Sheppard C J R, Ravi K, et al. Fighting against diffraction: Apodization and near field diffraction structures [J]. |
Laser & Photonics Reviews, 2012, 6(3): 1-39. | |
[24] | Wang H F, Shi L P, Yuan G Q, et al. Subwavelength and super-resolution nondiffraction beam [J]. Applied Physics Letters, |
20 | 06, 89(17): 171102. |
[25] | Tong Z, Korotkova O. Beyond the classical Rayleigh limit with twisted light [J]. Optics Letters, 2012, 37(13): 2595. |
[26] | Liang C, Wu G, Wang F, et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of |
partially coherent light sources [J]. Optics Express, 2017, 25(23): 28352. | |
[27] | Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum [J]. |
Science, 2013, 341(6145): 537-540. | |
[28] | Garc´es-Ch´avez V, Mcgloin D, Melville H, et al. Simultaneous micromanipulation in multiple planes using a selfreconstructing |
light beam [J]. Nature, 2002, 419(6903): 145-147. | |
[29] | Mazilu M, Dholakia K, Baumgartl J. Optically mediated particle clearing using Airy wavepackets [J]. Nature Photonics, 2008, |
2( | 11): 675-678. |
[30] | Yu Jiayi. Atmospheric Popagation and Applications of Partially Coherent Beams with Special Spatial Structure (特殊空间结 |
构部分相干光束的大气传输及应用) [D]. Suzhou: Doctorial Dissertation of Soochow University, 2019 (in Chinese). | |
[31] | Born M, Wolf E. Principles of Optics [M]. Cambridge: Cambridge University, 1999. |
[32] | Harlow G R. Wave propagation in a Random Medium [J]. Physics Bulletin, 1960, 11(9): 232-233. |
[33] | Tatarskii V I. Wave Propagation in a Turbulent Medium [M]. New York: McGraw-Hill, 1961. |
[34] | Lutomirski R F, Yura H T. Propagation of a finite optical beam in an inhomogeneous medium [J]. Applied Optics, 1971, 10(7): |
16 | 52-1658. |
[35] | Banakh V A, Krekov G M, Mironov V L, et al. Focused-laser-beam scintillations in the turbulent atmosphere [J]. Journal of |
the Optical Society of America, 1974, 64(4): 516-518. | |
[36] | Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media [M]. SPIE Press, 2005. |
[37] | Dan Y, Zhang B. Second moments of partially coherent beams in atmospheric turbulence [J]. Optics Letters, 2009, 34(5): |
56 | 3-565. |
[38] | Dan Y, Zhang B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere [J]. Optics Express, |
20 | 08, 16(20): 15563-15575. |
[39] | Siegman A E. New developments in laser resonators [J]. Optical Resonators, 1990, 1224: 2-14. |
[40] | Gori F, Santarsiero M, Sona A. The change of width for a partially coherent beam on paraxial propagation [J]. Optics Communications, |
19 | 91, 82(3-4): 197-203. |
[41] | Xiao X. Beam wander analysis for focused partially coherent beams propagating in turbulence [J]. Optical Engineering, 2012, |
51 | (2): 026001. |
[42] | Gu Y, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence [J]. Journal of the Optical Society |
of America A, 2010, 27(12): 2621-2629. | |
[43] | Gu Y, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence [J]. Optics Letters, 2013, 38(9): 1395. |
[44] | Kon A I, Tatarskii V I. On the theory of the propagation of partially coherent light beams in a turbulent atmosphere [J]. |
Radiophysics & Quantum Electronics, 1972, 15(10): 1187-1192. | |
[45] | Belen’Kii M S, Kon A I, Mironov V L. Turbulent distortions of the spatial coherence of a laser beam [J]. Soviet Journal of |
Quantum Electronics, 1977, 7(3): 287-290. | |
[46] | Leader J C. Atmospheric propagation of partially coherent radiation [J]. Journal of the Optical Society of America, 1978, |
68 | (2): 175-185. |
[47] | Fante R L. Two-position, two-frequency mutual-coherence function in turbulence [J]. Journal of the Optical Society of America, |
19 | 81, 71(12): 1446-1451. |
[48] | Leader J C. Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence [J]. |
Journal of the Optical Society of America, 1979, 69(1): 73-84. | |
[49] | Fante R L. Intensity fluctuations of an optical wave in a turbulent medium effect of source coherence [J]. Journal of Modern |
Optics, 2012, 9: 1203-1207. | |
[50] | Banach V A, Buldakov V M, Mironov V L. Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere |
[J] | Optics & Spectroscopy, 1983, 54(6): 626-629. |
[51] | Banakh V A, Buldakov V M. Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a |
turbulent atmosphere [J]. Optics & Spectroscopy, 1983, 55(55): 423-426. | |
[52] | Fante R L. The effect of source temporal coherence on light scintillations in weak turbulence [J]. Journal of the Optical Society |
of America, 1979, 69(1): 71-73. | |
[53] | Wu J. Propagation of a Gaussian-Schell beam through turbulent media [J]. Journal of Modern Optics, 1990, 37(4): 671-684. |
[54] | Wu J, Boardman A D. Coherence length of a Gaussian-Schell beam and atmospheric turbulence [J]. Journal of Modern Optics, |
19 | 91, 38(7): 1355-1363. |
[55] | Gbur G, Wolf E. Spreading of partially coherent beams in random media [J]. Journal of the Optical Society of America A, |
20 | 02, 19(8): 1592-1598. |
[56] | Ponomarenko S A, Greffet J J, Wolf E. The diffusion of partially coherent beams in turbulent media [J]. Optics Communications, |
20 | 02, 208(1-3): 1-8. |
[57] | Dogariu A, Amarande S. Propagation of partially coherent beams: Turbulence-induced degradation [J]. Optics Letters, 2003, |
28 | (1): 10-12. |
[58] | Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence |
[J] | Journal of the Optical Society of America A, 2003, 20(6): 1094-1102. |
[59] | Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space |
laser communication [J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802. | |
[60] | Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian-Schell beam [J]. Journal of the Optical |
[61] | Korotkova O. Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom [J]. |
Optical Engineering, 2004, 43(2): 330. | |
[62] | Schulz T J. Iterative transform algorithm for the computation of optimal beams [J]. Journal of the Optical Society of America |
A, 2004, 21(10): 1970-1974. | |
[63] | Schulz T J. Optimal beams for propagation through random media [J]. Optics Letters, 2005, 30(10): 1093-1095. |
[64] | Gori F, Guattari G, Padovani C. Modal expansion for J0-correlated Schell-model sources [J]. Optics Communications, 1987, |
4( | 4): 311-316. |
[65] | Gori F, Santarsiero M. Devising genuine spatial correlation functions [J]. Optics Letters, 2008, 32(24): 3531-3533. |
[66] | Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations [J]. |
Optics Letters, 2011, 36(20): 4104-4106. | |
[67] | Tong Z, Korotkova O. Electromagnetic nonuniformly correlated beams [J]. Journal of the Optical Society of America A, 2012, |
20 | (24): 2154-2158. |
[68] | Sahin S,Korotkova O. Light sources generating far fields with tunable flat profiles [J]. Optics Letters, 2012, 37(14): 2970-2972. |
[69] | Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams [J]. Journal of the Optical Society of America A, |
20 | 12, 29(10): 2159-2164. |
[70] | Mei Z, Korotkova O, Shchepakina E. Electromagnetic multi-Gaussian Schell-model beams [J]. Journal of Optics, 2012, 15(2): |
02 | 5705. |
[71] | Mei Z, Korotkova O. Random sources generating ring-shaped beams [J]. Optics Letters, 2013, 38(2): 91-93. |
[72] | Chen Y, Liu L, Wang F, et al. Elliptical Laguerre-Gaussian correlated Schell-model beam [J]. Optics Express, 2014, 22(11): |
13 | 975-13987. |
[73] | Chen Y, Yu J, Yuan Y, et al. Theoretical and experimental studies of a rectangular Laguerre–Gaussian-correlated Schell-model |
beam [J]. Applied Physics B, 2016, 122(2): 31. | |
[74] | Chen Y, Gu J, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam [J]. Physical |
Review A, 2015, 91(1): 013823. | |
[75] | Chen Y, Wang F, Yu J, et al. Vector Hermite-Gaussian correlated Schell-model beam [J]. Optics Express, 2016, 24(14): |
15 | 232-15250. |
[76] | Mei Z, Korotkova O. Cosine-Gaussian Schell-model sources [J]. Optics Letters, 2013, 38(14): 2578-2580. |
[77] | Ma L, Ponomarenko S A. Optical coherence gratings and lattices [J]. Optics Letters, 2014, 39(23): 6656-6659. |
[78] | Ma L, Ponomarenko S A. Free-space propagation of optical coherence lattices and periodicity reciprocity [J]. Optics Express, |
20 | 15, 23(2): 1848-1856. |
[79] | Liang C, Mi C, Wang F, et al. Vector optical coherence lattices generating controllable far-field beam profiles [J]. Optics |
Express, 2017, 25(9): 9872-9885. | |
[80] | Chen R, Dong Y, Wang F, et al. Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere |
[J] | Applied Physics, 2013, B112(2): 247-259. |
[81] | Cang J, Fang X, Liu X. Propagation properties of multi-Gaussian Schell-model beams through ABCD optical systems and in |
atmospheric turbulence [J]. Optics & Laser Technology, 2013, 50: 65-70. | |
[82] | Du S, Yuan Y, Liang C, et al. Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere [J]. |
Optics & Laser Technology, 2013, 50: 14-19. | |
[83] | Yuan Y, Liu X, Wang F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere [J]. Optics |
Communications, 2013: 57-65. | |
[84] | Korotkova O, Avramovzamurovic S, Nelson C, et al. Scintillation reduction in multi-Gaussian Schell-model beams propagating |
in atmospheric turbulence [C]. Proceedings of SPIE, 2014, 9224: 92240M. | |
[85] | Sharifi M, Wu G, Luo B, et al. Beam wander of electromagnetic partially coherent flat-topped beam propagating in turbulent |
[86] | Korotkova O, Shchepakina E. Rectangular Multi-Gaussian Schell-Model beams in atmospheric turbulence [J]. Journal of |
Optics, 2014, 16(4): 045704. | |
[87] | Wu G, Zhou H, Zhao T, et al. Propagation properties of electromagnetic multi-Gaussian Schell model beams propagating |
through atmospheric turbulence [J]. Journal of the Korean Physical Society, 2014, 64(6): 826-831. | |
[88] | Mei Z, Shchepakina E, Korotkova O. Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence |
[J] | Optics Express, 2013, 21(15): 17512-17519. |
[89] | Mei Z, Korotkova O. Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence [J]. |
Optics Express, 2013, 21(22): 27246-27259. | |
[90] | Xu H F, Zhang Z, Qu J, et al. Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov |
turbulence [J]. Optics Express, 2014, 22(19): 22479-22489. | |
[91] | Cang J, Xiu P, Liu X. Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical |
systems in turbulent atmosphere [J]. Optics & Laser Technology, 2013, 54: 35-41. | |
[92] | Wang H,Wang H, Xu Y, et al. Intensity and polarization properties of the partially coherent Laguerre–Gaussian vector beams |
with vortices propagating through turbulent atmosphere [J]. Optics & Laser Technology, 2014, 56: 1-6. | |
[93] | Chen R, Liu L, Zhu S, et al. Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere [J]. |
Optics Express, 2014, 22(2): 1871-1883. | |
[94] | Zhou Y, Yuan Y, Qu J, et al. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov |
turbulence [J]. Optics Express, 2016, 24(10): 10682-10693. | |
[95] | Zhang B, Huang H, Xie C, et al. Twisted rectangular Laguerre–Gaussian correlated sources in anisotropic turbulent atmosphere |
[J] | Optics Communications, 2020, 459: 125004. |
[96] | Song Z, Liu Z, Zhou K, et al. Propagation factors of multi-sinc Schell-model beams in non-Kolmogorov turbulence [J]. Optics |
Express, 2016, 24(2): 1804-1813. | |
[97] | Li J, Suo Q, Chen L. Analysis to beam quality of partially coherent flat-topped vortex beams propagating through atmospheric |
turbulence [J]. Optik International Journal for Light & Electron Optics, 2016, 127(23): 11342-11348. | |
[98] | Zhu J, Li X, Tang H, et al. Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and |
atmospheric turbulence [J]. Optics Express, 2017, 25(17): 20071-20086. | |
[99] | Liu X, Yu J, Cai Y, et al. Propagation of optical coherence lattices in the turbulent atmosphere [J]. Optics Letters, 2016, 41(18): |
41 | 82-4185. |
[100] | Yu J, Chen Y, Liu L, et al. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam |
in Kolmogorov and non-Kolmogorov turbulence [J]. Optics Express, 2015, 23(10): 13467-13481. | |
[101] | Yu J, Zhu X,Wang F, et al. Experimental study of reducing beam wander by modulating the coherence structure of structured |
light beams [J]. Optics Letters, 2019, 44(17): 4371-4374. | |
[102] | Yu J, Cai Y, Gbur G. Rectangular Hermite non-uniformly correlated beams and its propagation properties [J]. Optics Express, |
20 | 18, 26(21): 27894-27906. |
[103] | Yu J, Wang F, Liu L, et al. Propagation properties of Hermite non-uniformly correlated beams in turbulence [J]. Optics |
Express, 2018, 26(13): 16333-16343. |
[1] | LI Shichun , ∗ , HUANG Zuxin , SHI Dongdong , XIN Wenhui , , SONG Yuehui , , GAO Fei , , HUA Dengxin , ∗. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872-879. |
[2] | CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang∗. Research progress of NO2 differential absorption lidar technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580-592. |
[3] | ZHANG Qinwei, CAO Lianzhen∗, LIU Xia, YANG Yang, ZHAO Jiaqiang, LI Yingde. Entanglement degradation of photon entangled states in non-Kolmogorov atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 496-503. |
[4] | LENG Kun, YANG Yuntao, TAN Zhe, GONG Yanchun, WU Wenyuan∗. Evaluation method of laser atmospheric transmission effectiveness based on support vector machine [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 547-555. |
[5] | YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579. |
[6] | ZHOU Zhenglan, ZHOU Yuan, XU Huafeng, QU Jun∗. Research progress of the partially coherent beams with special correlation functions [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 615-632. |
[7] | Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. |
[8] | XI Fengjie, YANG Yi, JING Xu, DU Shaojun, XU Xiaojun. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. |
[9] | WANG Yingjian, ∗, SHI Dongfeng, . Atmospheric Effects on Optical Imaging and Correction Techniques [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409-417. |
[10] | HU Shuai, ∗, LIU Lei, ∗, LIU Xichuan, GAO Taichang, . Progress of measurement techniques of multi-angle scattering properties of atmospheric particles [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 477-496. |
[11] | HUANG Yinbo, CAO Zhensong, ∗, LU Xingji, HUANG Jun, LIU Qiang, DAI Congming, HUANG Honghua, Zhu Wenyue, RAO Ruizhong, WANG Yingjian, . Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 497-505. |
[12] | QIANG Xiwen, ZONG Fei, ZHAI Shengwei, FENG Shuanglian, WU Min, CHANG Jinyong, ZHANG Zhigang, HU Yuehong. Simulating and Measuring of Atmospheric Turbulence in Laboratory [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 506-512. |
[13] | GUAN Zhongyin, LI Bao, QIAN Jiali, DENG Lunhua, XU Huailiang, . Study on formation of CN radical in mixture of nitrogen and methane [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 144-149. |
[14] | LUO Jie, HOU Zai-hong, JING Xu WANG Zhen-dong, AN Yan-yang, QIN Lai-an WU Yi, QIU Chen-xiang, . Advances in Coherent Laser Wind Measurement Technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 129-137. |
[15] | LI Nan, QIAO Chunhong, ZHANG Pengfei, FENG Xiaoxing, FAN Chengyu. Research of Laser Propagation in the Non-Kolmogorov Turbulence Atmosphere and its Phase Compesation [J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 745-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||