Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (4): 409-417.
• Special Issue on Laser Propogation and Detection in Atmosphere • Previous Articles Next Articles
WANG Yingjian1;2∗, SHI Dongfeng1;2
Received:
2020-05-07
Revised:
2020-07-01
Published:
2020-07-28
Online:
2020-07-21
CLC Number:
WANG Yingjian, ∗, SHI Dongfeng, . Atmospheric Effects on Optical Imaging and Correction Techniques[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409-417.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Roggemann M C, Welsh B. Imaging Through Turbulence [M]. Boca Raton: CRC Press, 1996. |
[2] | He K M, Sun J, Tang X O. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and |
Machine Intelligence, 2011, 33(12): 2341-2353. | |
[3] | Rao Ruizhong. General characteristics of modulation transfer function of turbid atmosphere [J]. Acta Optica Sinica (光学学 |
报) | , 2011, 31(9): 0900125 (in Chinese). |
[4] | Center for Adaptive Optics, University of California. The mission of the UC Center for Adaptive Optics is to develop, apply, |
and disseminate adaptive optics science and technology in service to scientific research, healthcare, and industry [OL]. | |
http://cfao.ucolick.org/mission.php, 2010. | |
[5] | Primot J, Rousset G, Fontanella J C. Deconvolution from wavefront sensing-A new technique for compensating turbulencedegraded |
images [J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 1999, 7(9): 1598-1608. | |
[6] | Roggemann M C, Welsh B M. Signal-to-noise ratio for astronomical imaging by deconvolution from wave-front sensing [J]. |
Applied Optics, 1994, 33(23): 5400-5414. | |
[7] | Ford S D, Welsh B M, Roggemann M C. Constrained least-squares estimation in deconvolution from wave-front sensing [J]. |
Optics Communications, 1998, 151(3): 93-100. | |
[8] | Yitzhaky Y, Dror I, Kopeika N S. Restoration of atmospherically blurred images according to weather-predicted atmospheric |
modulation transfer functions [J]. Optical Engineering, 1997, 36(11): 3064-3072. | |
[9] | Kopeika N S, Sheayik T, Givati Z, et al. Restoration of satellite images based on atmospheric MTF [C]. International Symposium |
on Optical Science, Engineering, and Instrumentation, 1996, 2817: 106-117. | |
[10] | Harmeling S, Sra S, Hirsch M, et al. Multiframe blind deconvolution, super-resolution, and saturation correction via incremental |
EM [C]. IEEE International Conference on Image Processing, 2010: 3313-3316. | |
[11] | Hirsch M, Harmeling S, Sra S, et al. Online multi-frame blind deconvolution with super-resolution and saturation correction |
[J] | Astronomy & Astrophysics, 2011, 531: A9. |
[12] | Hope D A, Jefferies S M. Compact multiframe blind deconvolution [J]. Optics Letters, 2011, 36(6): 867-869. |
[13] | Sroubek F, Milanfar P. Robust multichannel blind deconvolution via fast alternating minimization [J]. IEEE Transactions on |
Image Processing, 2012, 21(4): 1687-1700. | |
[14] | Frieden B R. Turbulent image reconstruction from a superposition model [J]. Optics Communications, 1993, 98(6): 241-244. |
[15] | Xiang Z, Milanfar P. Removing atmospheric turbulence via space-invariant deconvolution [J]. IEEE Transactions on Pattern |
Analysis and Machine Intelligence, 2013, 35(1): 157-170. | |
[16] | Mugnier L M, Robert C, Conan J M, et al. Myopic deconvolution from wave-front sensing [J]. Journal of the Optical Society |
of America A-Optics Image Science and Vision, 2001, 18(4): 862-872. | |
[17] | Blanco L, Mugnier L M, Glanc M. Myopic deconvolution of adaptive optics retina images [C]. Society of Photo-Optical |
Instrumentation Engineers, 2011, 7904: 790412. | |
[18] | Mugnier L M, Fusco T, Conan J M. MISTRAL: A myopic edge-preserving image restoration method, with application to |
astronomical adaptive-optics-corrected long-exposure images [J]. Journal of the Optical Society of America A-Optics Image | |
Science and Vision, 2004, 21(10): 1841-1854. | |
[19] | Hom E F Y, Marchis F, Lee T K, et al. AIDA: An adaptive image deconvolution algorithm with application to multi-frame |
and three-dimensional data [J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2007, 24(6): | |
15 | 80-1600. |
[20] | Jefferies S M, Hart M. Deconvolution from wave front sensing using the frozen flow hypothesis [J]. Optics Express, 2011, |
19 | (3): 1975-1984. |
[21] | Kopriva I, Garrood D J, Borjanovic V. Single frame blind image deconvolution by non-negative sparse matrix factorization [J]. |
Optics Communications, 2006, 266(2): 456-464. | |
[22] | Jefferies S M, Hart M. Deconvolution from wave front sensing using the frozen flow hypothesis [J]. Optics Express, 2011, |
19 | (3): 1975-1984. |
[23] | Tian Y, Rao C H, Wei K. Post-processing of adaptive optics images based on frame selection and multi-frame blind deconvolution |
[J] | Adaptive Optics Systems, 2008, 7015: 70152E. |
[24] | Zhong Yan. Lucky imaging [OL]. https://www.sohu.com/a/86854782−119737, 2016. |
[25] | Shi D F, Fan C Y, Zhang P F, et al. Adaptive optical ghost imaging through atmospheric turbulence [J]. Optics Express, 2012, |
20 | (27): 27992-27998. |
[26] | Shi D F, Fan C Y, Zhang P F, et al. Two-wavelength ghost imaging through atmospheric turbulence [J]. Optics Express, 2013, |
21 | (2): 2050-2064. |
[27] | Rao Ruizhong. Light Propagation in the Atmospheric Turbulence (光在湍流大气中的传播) [M]. Hefei: Anhui Science & |
Technology Press, 2005 (in Chinese). | |
[28] | Wang Y J,Wu Y. Numerical simulation of propagation of diffuse reflection light of extended object [J]. Acta Optica Sinica (光 |
学学报) | , 1998, 18(10): 1470-1472 (in Chinese). |
[1] | ZENG Ziwei , LI Hongguang, GUO Yufeng , LIAO Wentao. High-accuracy terahertz spectral identification method for concealed dangerous goods [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 340-348. |
[2] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[3] | LI Nengfei, HUANG Jian, ∗. Research on high spatial resolution ghost imaging technology [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 549-557. |
[4] | ZHOU Hao , , FANG Bo , , YANG Nana , , ZHAO Weixiong ∗ , WANG Chunhui , , ZHANG Weijun , . Development of virtually imaged phased array spectrometer in red band [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 788-795. |
[5] | LI Shichun , ∗ , HUANG Zuxin , SHI Dongdong , XIN Wenhui , , SONG Yuehui , , GAO Fei , , HUA Dengxin , ∗. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872-879. |
[6] | WANG Ye, ZHANG Song, ∗, ZHANG Bing. Femtosecond transient absorption spectroscopy and its applications [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 547-563. |
[7] | CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang∗. Research progress of NO2 differential absorption lidar technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580-592. |
[8] | ZHANG Qinwei, CAO Lianzhen∗, LIU Xia, YANG Yang, ZHAO Jiaqiang, LI Yingde. Entanglement degradation of photon entangled states in non-Kolmogorov atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 496-503. |
[9] | ZHENG Lianhui∗, LIU Bingyang, YAN Huixian. An optimization design method of high spectral resolution solar grating spectrometer [J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 301-306. |
[10] | WANG Qiang, DING Yuchong∗, QU Jingjing, WANG Lu, DONG Honglin, FANG Chengli, MAO Shiping. Performance of Ce: GAGG scintillation crystals with different thickness [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 259-264. |
[11] | LENG Kun, YANG Yuntao, TAN Zhe, GONG Yanchun, WU Wenyuan∗. Evaluation method of laser atmospheric transmission effectiveness based on support vector machine [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 547-555. |
[12] | HUANG Jian, ∗, DENG Ke, . Theoretical challenges in the research of atmospheric coherent laser communication [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 556-565. |
[13] | YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579. |
[14] | ZHOU Zhenglan, ZHOU Yuan, XU Huafeng, QU Jun∗. Research progress of the partially coherent beams with special correlation functions [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 615-632. |
[15] | Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||