Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (4): 477-496.
• Special Issue on Laser Propogation and Detection in Atmosphere • Previous Articles Next Articles
HU Shuai1;2∗, LIU Lei1;2∗, LIU Xichuan1, GAO Taichang1;2
Received:
2020-04-30
Revised:
2020-05-11
Published:
2020-07-28
Online:
2020-07-21
CLC Number:
HU Shuai, ∗, LIU Lei, ∗, LIU Xichuan, GAO Taichang, . Progress of measurement techniques of multi-angle scattering properties of atmospheric particles[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 477-496.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Liou K N. An Introduction to Atmospheric Radiation [M]. San Diego: Academic Press, 2003. |
[2] | Yang P, Liou K N, Bi L, et al. On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation |
parameterization [J]. Advances in Atmospheric Sciences, 2015, 32: 32-63. | |
[3] | Rao Ruizhong. Modern Atmospheric Optics (现代大气光学) [M]. Beijing: Science Press, 2012 (in Chinese). |
[4] | Chen Hongbin, Sun Haibing. Absorption and scattering properties of surface melted ice spheres in visible and near infrared |
regions [J]. Chinese Journal of Atmospheric Sciences (大气科学), 1999, 23(2): 233-238 (in Chinese). | |
[5] | Dou T, Xiao C, Shindell D T, et al. The distribution of snow black carbon observed in the Arctic and compared to the GISSPUCCINI |
model [J]. Atmospheric Chemistry and Physics, 2012, 12: 7995-8007. | |
[6] | IPCC: Climate change 2007. Intergovernmental panel of global climate change [R]. 2007. |
[7] | Liou K N, Takano Y, Yang P. Intensity and polarization of dust aerosols over polarized anisotropic surfaces [J]. Journal of |
Quantitative Spectroscopy & Radiative Transfer, 2013, 127: 149-157. | |
[8] | Wu Zhensen, You Jiguang, Yang Ruike. Study on laser attenuation character in sand and dust storms [J]. Chinese Journal of |
Lasers (中国激光), 2004, 31(9): 1076-1080 (in Chinese). | |
[9] | Wang Jianyun. U.S. military’s weapons encounter the challenge of Afghanistan’s meteorological condition [J]. Modern |
Weapons (现代兵器), 2001, 12: 35-36 (in Chinese). | |
[10] | Li Min. Development trend of the laser weapon and analysis [J]. Ship Electronic Engineering (舰船电子工程), 37(11): 16-20 |
(in Chinese). | |
[11] | Liu Jingru, Du Taijiao,Wang Lijun. High Energy Laser System Test and Evaluation (高能激光系统试验与评估) [M]. Beijing: |
National Defense Industry Press, 2014 (in Chinese). | |
[12] | Xie Chenbo, Mao Minjuan, Yue Guming, et al. New mobile lidar for the measurement of tropospheric aerosol [J]. Spectroscopy |
and Spectral Analysis (光谱学与光谱分析), 2006, 26(11): 1973-1976 (in Chinese). | |
[13] | Yang Hui, LiuWenqing, Liu Jianguo, et al. Urban planetary boundary layer aerosol monitoring by lidar at Beijing [J]. Chinese |
Journal of Lasers (中国激光), 2006, 33(9): 1255-1259 (in Chinese). | |
[14] | Guo Hong, Gu Xingfa, Xie Donghai, et al. A review of atmospheric aerosol research by using polarization remote sensing [J]. |
Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2014, 34(7): 1873-1880 (in Chinese). | |
[15] | Liu Dong,Wang YingJian,Wang Zhien, et al. Development and data application of space borne lidar for atmospheric sounding |
[C] | 10th National Optoelectronic Technology Academic Exchange Conference, 2012. |
[16] | Gon Jieqiong, Zhan Haigang, Liu Dazhao. A review on polarization information in the remote sensing detection [J]. Spectroscopy |
and Spectral Analysis (光谱学与光谱分析), 2010, 30(4): 1088-1095 (in Chinese). | |
[17] | Deuz´e J L, Goloub P, Herman M, et al. Estimate of the aerosol properties over the ocean with POLDER [J]. Journal of |
Geophysical Research, 2000, 105(D12): 15329-15346. | |
[18] | Deuz´e J L, Br´eon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized |
measurements [J]. Journal of Geophysical Research, 2001, 106(D5): 4913-4926. | |
[19] | Hu Shuai, Gao Taichang, Li Hao, et al. Influence of atmospheric refraction on radiative transfer at visible light band [J]. Acta |
Physica Sinica (物理学报), 2015, 64(18): 184203 (in Chinese). | |
[20] | Hu S, Gao T, Li H, et al. Effect of atmospheric refraction on radiative transfer in visible and near-infrared band: Model |
development, validation, and applications [J].Journal of Geophysical Research: Atmospheres, 2016, 121: 2349-2368. | |
[21] | Hu Shuai, Gao Taichang, Liu Lei. Analysis on scattering characteristics and equivalent Mie scattering errors of nonspherical |
atmospheric aerosol [J]. Journal of the Meteorological Sciences (气象科学), 2014, 34(6): 612-619 (in Chinese). | |
[22] | Fan Meng, Chen Liangfu, Li Shenshen, et al. Scattering properties of nonspherical particles in the CO2 shortwave infrared |
band [J]. Acta Physica Sinica (物理学报), 2012, 61(20): 2042021 (in Chinese). | |
[23] | Cheng T H, Gu X F, Yu T, et al. The reflection and polarization properties of non-spherical aerosol particles [J]. Journal of |
Quantitative Spectroscopy and Radiative Transfer, 2010, 111(6): 895-906. | |
[24] | Dubovik O, Sinyuk A, Lapyonok T, et al. Application of spheroid models to account for aerosol particle nonsphericity in |
remote sensing of desert dust [J]. Journal of Geophysical Research, 2006, 111: D11208. | |
[25] | Hu Shuai, Gao Taichang, Liu Lei, et al. Simulation of radiation transfer properties of polarized light in non-spherical aerosol |
using Monte Carlo method [J]. Acta Physica Sinica (物理学报), 2015, 64(9): 094201 (in Chinese). | |
[26] | Herman M, Deuz´e J L, Marchand A, et al. Aerosol remote sensing from POLDER//ADEOS over the ocean: Improved retrieval |
using a nonspherical particle model [J]. Journal of Geophysical Research, 2005, 110: D10S02. | |
[27] | Zhang Xuehai, Wei Heli, Dai Chongming, et al. Influence of aspect ratio on the light scattering properties of spherical aerosol |
particles [J]. Acta Physica Sinica (物理学报), 2015, 64(22): 224205 (in Chinese). | |
[28] | Shao Shiyong, Huang Yinbo, Wei Heli. Phase function of prolate spheroidic mono-disperse aerosol particles [J]. Acta Optica |
Sinica (光学学报), 2008, 29(1): 108-113 (in Chinese). | |
[29] | Hu Shuai, Gao Taichang, Li Hao, et al. Regularized inversion method for retrieving aerosol size distribution based on volume |
scattering function data at near-infrared waveband [J]. Infrared and Laser Engineering (红外与激光工程), 2015, 43(1): 1-10 | |
(in Chinese). | |
[30] | Li Xuebin, Gao Yiqiao, Wei Heli. Development of optical particle counter with double scattering angles [J]. Optics and |
Precision Engineering (光学精密工程), 2009, 17(7): 1528-1534 (in Chinese). | |
[31] | Lienert B R, Porter J N, Sharma S K. Aerosol size distributions from genetic inversion of polar nephelometer data [J]. Journal |
of Atmospheric and Oceanic Technology, 2003, 20(4): 1403. | |
[32] | Barkey B, Paulson S E, Chung A. Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol |
refractive index [J]. Aerosol Science and Technology, 2007, 41: 751-760. | |
[33] | Hu Huanling, Zhao Fengsheng, Gong Zhiben. The influence of refractive index on the measurement accuracy of light scattering |
particle counter [J]. Chinese Science Bulletin (科学通报), 1987(8): 632-634 (in Chinese). | |
[34] | Mao Jietai, Zhang Junhua, Wang Meihua. Summary comment on resaerch of atmospheric aerosol in China [J]. Acta Meteorologica |
Sinica (气象学报), 2002, 60(5): 625-634 (in Chinese). | |
[35] | Xu Li, Okada Ki, Zhang Peng, et al. An observation study of physical and chemical characteristics of atmospheric aerosol |
particles from late spring to early autumn over the Beijing area [J]. Chinese Journal of Atmospheric Sciences (大气科学), | |
20 | 02, 26(3): 402-411 (in Chinese). |
[36] | Ulanowski Z, Hesse E, Kaye P H, et al. Scattering of light from atmospheric ice analogues [J]. Journal of Quantitative |
Spectroscopy & Radiative Transfer, 2003, 79-80: 1091-1102. | |
[37] | Barkey B, Paulson S, Liou K N. Polar Nephelometers for Light Scattering by Ice Crystals and Aerosols: Design and Measurements |
(Light Scattering Review) [M]. Springer, 2012: 3-37. | |
[38] | Liu L, Mishchenko M I, Arnott W P. A study of radiative properties of fractal soot aggregates using the superposition T-matrix |
method [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(15): 2656-2663. | |
[39] | Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical |
signature, regional haze distribution and comparisons with global aerosols [J]. Atmospheric Chemistry and Physics, 2012, | |
12 | (21): 779-799. |
[40] | Hanel G, Zankl B. Aerosol size and relative humidity: Water uptake by mixtures of salts [J]. Tellus, 1984, 31(8): 478-486. |
[41] | Tang I N. Chemical and size effects of hygroscopic aerosols on light scattering coeffients [J]. Journal of Geophysical Research, |
19 | 96, 101(D14): 19245-19250. |
[42] | Mu˜noz O, Moreno F, Guirado D, et al. The Amsterdam-Granada light scattering database [J]. Journal of Quantitative Spectroscopy |
and Radiative Transfer, 2012, 113(7): 565-574. | |
[43] | Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations [J]. Journalof the Optical Society of America |
A, 1994, 11(4): 1491-1499. | |
[44] | Yurkin M A, Hoekstra A G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations [J]. Journal |
of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(13): 2234-2247. | |
[45] | Yang P, Liou K N. Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric |
optics models [J]. Journal of the Optical Society of America A, 1995, 12(1): 162-176. | |
[46] | Hu S, Gao T, Li H, et al. Light scattering computation model for nonspherical aerosol particles based on multi-resolution |
time-domain scheme: Model development and validation [J]. Optics Express, 2017, 25(2): 1643-1686. | |
[47] | Hu S, Gao T, Li H, et al. Application of convolution perfectly matched layer in MRTD scattering model for non-spherical |
aerosol particles and its performance analysis [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 200: 1-11. | |
[48] | Hu S, Gao T, Li H, et al. Simultaneously simulating the scattering properties of nonspherical aerosol particles with different |
sizes by the MRTD scattering model [J]. Optics Express, 2017, 25(15): 17872-17891. | |
[49] | Hu S, Gao T, Liu L, et al. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model |
[J] | Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 209: 58-72. |
[50] | Hu S, Gao T, Li H, et al. Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions |
using a parallelized pseudo-spectral time-domain technique [J]. Chinese Physics B, 2018, 27(5): 054215. | |
[51] | Liu C, Bi L, Panetta R L, et al. Comparison between the pseudo-spectral time domain method and the discrete dipole approximation |
for light scattering simulations [J]. Optics Express, 2012, 20(15): 16763-16776. | |
[52] | Liu C, Panetta R L, Yang P. Application of the pseudo-spectral time domain method to compute particle single-scattering |
properties for size parameters up to 200 [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2012, 113: 1728-1740. | |
[53] | Liu C, Panetta R L, Yang P. The effects of surface roughness on the scattering properties of hexagonal columns with sizes |
from the Rayleigh to the geometric optics regimes [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 129: | |
16 | 9-185. |
[54] | Bi L, Yang P, Kattawar G W, et al. Efficient implementation of the invariant imbedding T-matrix method and the separation |
of variables method applied to large nonspherical inhomogeneous particles [J]. Journal of Quantitative Spectroscopy and | |
Radiative Transfer, 2013, 116: 169-183. | |
[55] | Hu S, Liu L, Gao T, et al. Design and validation of the invariant imbedded T-matrix scattering model for atmospheric particles |
with arbitrary shapes [J]. Applied Sciences, 2019, 9(20): 4423. | |
[56] | Hu S, Liu L, Gao T, et al. An efficient implementation of the light scattering simulation for random-oriented non-rotationally |
symmetric particles using invariant imbedding T-matrix method [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, | |
20 | 20, 241: 106734. |
[57] | MishchenkoMI, Hovenier JW, Travis L D. Light Scattering by Nonspherical Particles, Thoery, Measurements, and Application |
[M] | New York: Academic Press, 2000. |
[58] | Mishchenko M I, Travis L D. Capabilities and limitations of a current Fortran implementation of the T-martrix method for |
randomly oriented, rotationally symmetric scatterers [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1998, | |
60 | (3): 309-324. |
[59] | Kalashnikov O V, Sokolik I N. Modeling the radiative properties of nonspherical soil-derived mineral aerosols [J]. Journal of |
Quantitative Spectroscopy & Radiative Transfer, 2004, 87: 137-166. | |
[60] | Kahnert M, Kylling A. Radiance and flux simulations for mineral dust aerosols: Assessing the error due tousing spherical or |
spheroidal model particles [J]. Journal of Geophysical Research Atmospheres, 2004, 109(D9): 729-736. | |
[61] | Hovenier J W, Volten H, Munoz O, et al. Laboratory studies of scattering matrices for randomly oriented particles: Potentials, |
problems, and perspectives [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 70-80: 741-755. | |
[62] | Kerker M. Light scattering instrumentation for areosol study: A historical overview [J]. Aerosol Science & Technology, 1997, |
27 | (11): 522-540. |
[63] | Dellago. Bestimmung der Gr¨obenverteilung von Aerosolpartikeln aus optischen Daten-M¨oglichkeiten und Probleme [D]. Master |
Thesis of University of Vienna, 1991. | |
[64] | Kuik F, Stammes P, Hovenier JW. Experimental determination of scattering matrices of water droplets and quartz particles [J]. |
Applied Optics, 1991, 30(33): 4872-4881. | |
[65] | Tyler J E, RichardsonWH. Nephelometer for the measurement of volume scattering function in situ [J]. Journal of the Optical |
Society of America A, 1958, 48(5): 354-357. | |
[66] | Quiney R G, Carswell A. Laboratory measurements of light scattering by simulated atmospheric aerosols [J]. Applied Optics, |
19 | 72 11(7): 1611-1618. |
[67] | Hunt A J, Huffman D R. A new polarization modulated light scattering instrument [J]. Review of Scientific Instruments, 1973, |
44 | (12): 1753-1762. |
[68] | Thompson R C, Bottiger J R, Fry E S. Measurement of polarized light interactions via the Mueller matrix [J]. Applied Optics, |
19 | 80, 19(8): 1323-1332. |
[69] | Volten H, Munoz O, Rol E, et al. Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm [J]. Journal of |
Geophysical Research, 2001, 106(D51): 17375-17401. | |
[70] | Ulanowski Z, Greenaway R S, Kaye P H, et al. Laser diffractometer for single-particle scattering measurements [J]. Measurement |
Science and Technology, 2002, 13(3): 292-296. | |
[71] | Renard J B, Hadamcik E, Cout´e B, et al. Wavelength dependence of linear polarization in the visible and near infrared domain |
for large levitating grains (PROGRA2 instruments) [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, | |
14 | 6: 424-430. |
[72] | Gorchakov G I. Light scattering matrices in the atmospheric surface layer [J]. Bull(Izv) Acad Sci USSR, 1966, 2: 595-605. |
[73] | Holland A C, Draper J S. Analytical and experimental investigation of light scattering from polydispersions of Mie particles |
[J] | Applied Optics, 1967, 6(3): 511-518. |
[74] | Holland A C, Gagne G. The scattering of polarized light by polydisperse systems of irregular particles [J]. Applied Optics, |
19 | 70, 9(5): 1113-1121. |
[75] | Huffman P. Polarization of light scattered by ice crystals [J]. Journal of the Atmospheric Sciences, 1970, 27: 1207-1208. |
[76] | Perry R J, Hunt A J, Huffman D R. Experimental determinations of Mueller scattering matrices for nonspherical particles [J]. |
Applied Optics, 1978, 17(17): 2700-2710. | |
[77] | Sassen K, Liou K N. Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: Angular |
scattering patterns [J]. Journal of the Atmospheric Sciences, 1979, 36: 838-851. | |
[78] | Sassen K, Liou K N. Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: Angular |
depolarizing and multiple scattering behavior [J]. Journal of the Atmospheric Sciences, 1979, 36: 852-861. | |
[79] | Dugin V P, Golubitskiy B M, Mirumyants S O, et al. Optical properties of articial ice clouds [J]. Bull (Izv) Acad Sci USSR, |
19 | 71, 7: 871-877. |
[80] | Dugin V P, Mirumyants S O. The light scattering matrices of artificial crystalline clouds [J]. Bull (Izv) Acad Sci USSR, Atmospheric |
and Oceanic Physics, 1976, 9: 988-991. | |
[81] | HansonMZ, EvansWH. Polar nephelometer for atmospheric particulate studies [J]. Applied Optics, 1980, 19(19): 3389-3395. |
[82] | Takamura T, Tanaka M. Measurements of intensity and degree of polarization of light scattered by aerosols [J]. Science Reports |
of the Tohoku University Ser Geophysics, 1978, 25: 169-196. | |
[83] | Tanaka M T, NakajimaT. Refractive index and size distribution of aerosols as estimated from light scattering measurements [J]. |
Journal of Climatology & Applied Meteorology, 1983, 22(7): 1253-1261. | |
[84] | Quinby-Hunt M S, Erskine L L, Hunt A J. Polarized light scattering by aerosols in the marine atmospheric boundary layer [J]. |
Applied Optics, 1997, 36(21): 5168-5184. | |
[85] | Zhao F, Gong Z, Hu H, et al. Simultaneous determination of the aerosol complex index of refraction and size distribution from |
scattering measurements of polarized light [J]. Applied Optics, 1997, 36(30): 7992-8001. | |
[86] | Zhao F. Determination of the complex index of refraction and size distribution of aerosols from polar nephelometer measurements |
[J] | Applied Optics, 1999, 38(12): 2331-2336. |
[87] | Schnaiter M, Wurm G. Experiments on light scattering and extinction by small, micrometer-sized aggregates of spheres. [J]. |
Applied Optics, 2002, 41(6): 1175-1180. | |
[88] | Porter J N, Lienert B R, Sharma S K, et al. Vertical and horizontal aerosol scattering fields over Bellows beach, Oahu, during |
the SEAS experiment [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(13): 1375-1387. | |
[89] | Cui Wenyi, Hong Jin, Zhang Yunjie, et al. Control of the polarizing angle on different scattering angle in multi-angle polarization |
nephelometer [J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2010, 5(3): 209-214 (in | |
Chinese). | |
[90] | Xie Qiyuan, Zhang Heping, Zhang Yongming, et al. Experimental study on Stokes scattering matrixes of smoke particles [J]. |
Journal of Infrared and Millimeter Waves (红外与毫米波学报), 2007, 26(4): 279-283 (in Chinese). | |
[91] | Zhang Qixing, Li Yaodong, Deng Xiaojiu, et al. Experimental determination of scattering matrix of fire smoke particles at 532 |
nm [J]. Acta Physica Sinica (物理学报), 2011, 60(8): 084216 (in Chinese). | |
[92] | Pluchino A. Scattering photometer for measuring single ice crystals and evaporation and condensation rates of liquid droplets |
[J] | Journal of the Optical Society of America A, 1987, 4(3): 614-620. |
[93] | Dick W D, McMurry P H, Bottiger J R. Size-and composition-dependent response of the DAWN-A multiangle single-particle |
optical detector [J]. Aerosol Science and Technology, 1994, 20(4): 345-362. | |
[94] | Dick W D, Ziemann P J, Huang P F, et al. Optical shape fraction measurements of submicrometre laboratory and atmospheric |
aerosols [J]. Measurement Science and Technology, 1998, 9(2): 183-196. | |
[95] | Leong K H, Jones M R, Holdridge D J. Design and test of a polar nephelometer [J]. Aerosol Science and Technology, 1995, |
23 | (16): 341-356. |
[96] | West R A, Doose L R, Eibl A M. Laboratory measurements of mineral dust scattering phase function and linear polarization |
[J] | Journal of Geophysical Research, 1997, 102(D14): 16871-16881. |
[97] | Barkey B, Liou K N. Polar nephelometer for light-scattering measurements of ice crystals [J]. Optics Letters, 2001, 26(4): |
23 | 2-234. |
[98] | Abdelmonem A, Schnaiter M, Amsler P, et al. First correlated measurements of the shape and light scattering properties |
of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe [J]. Atmospheric Measurement | |
Techniques, 2011, 4: 2125-2142. | |
[99] | Sch¨on R, Schnaiter M, Ulanowski Z, et al. Particle habit imaging using incoherent light: A first step toward a novel instrument |
for cloud microphysics [J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(4): 493-512. | |
[100] | Meng Xiangqian, Hu Shunxing, Wang Yingjian, et al. Aerosol scattering phase function and visibility based on charge |
coupled device [J]. Acta Optica Sinica (光学学报), 2012, 32(9): 1-6 (in Chinese). | |
[101] | Dick W D, Ziemann P J, McMurry P H. Multiangle light-scattering measurements of refractive index of submicron atmospheric |
particles [J]. Aerosol Science and Technology, 2007, 41(5): 549-569. | |
[102] | Jones M R, Curry B P, BrewsterM Q, et al. Inversion of light-scattering measurements for particle size and optical constants: |
Theoretical study [J]. Applied Optics, 1994, 33(18): 4025-4034. | |
[103] | JonesMR, Leong K H, BrewsterMQ, et al. Inversion of light-scattering measurements for particle size and optical constants: |
Experimental study [J]. Applied Optics, 1994, 33(8): 4035-4041. | |
[104] | Li Cai, Ke Tiancun, Cao Wenxi, et al. An instrument for measuring in-situ profiles of the volume scattering function of |
seawater [J]. Optical Technique (光学技术), 2005, 31(suppl.): 221-214 (in Chinese). | |
[105] | Bartholdi M, Salzman G C, Hiebert R D, et al. Differential light scattering photometer for rapid analysis of single particles in |
flow [J]. Applied Optics, 1980, 19(10): 1573-1581. | |
[106] | Hirst E, Kaye P H, Guppy J R. Light scattering from nonspherical airborne particles: Experimental and theoretical comparisons |
[J] | Applied Optics, 1994, 33(30): 7180-7186. |
[107] | Gayet J F, Crepel O, Fournol J F, et al. A new airborne polar Nephelometer for the measurements of optical and microphysical |
cloud properties. Part I: Theoretical design [J]. Annales Geophysicae, 1997, 15(13): 451-459. | |
[108] | Gayet J F, Crepel O, Fournol J F, et al. A new airborne polar Nephelometer for the measurements of optical and microphysical |
cloud properties. Part II: Preliminary tests [J]. Annales Geophysicae, 1997, 15(13): 460-470. | |
[109] | Kaller W. A new polar nephelometer for measurement of atmospheric aerosol [J]. Journal of Quantitative Spectroscopy & |
Radiative Transfer, 2004, 87(32): 107-117. | |
[110] | Castagner J L, Bigio I J. Polar nephelometer based on a rotational confocal imaging setup [J]. Applied Optics, 2006, 45(10): |
22 | 32-2239. |
[111] | Castagner J L, Bigio I J. Particle sizing with a fast polar nephelometer [J]. Applied Optics, 2007, 46(4): 527-532. |
[112] | Curtis D B, Aycibina M, Young M A, et al. Simultaneous measurement of light-scattering properties and particle size |
distribution for aerosols application to ammonium sulfate and quartz aerosol particles [J]. Atmospheric Environment, 2007, 41: | |
47 | 48-4758. |
[113] | Curtis D B, Meland B, Aycibin M. A laboratory investigation of light scattering from representative components of mineral |
dust aerosol at a wavelength of 550 nm [J]. Journal of Geophysical Research, 2008, 113: D08210. | |
[114] | Wang Y, Chakrabarti A, Sorensen C M. A light-scattering study of the scattering matrix elements of Arizona Road Dust [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 163: 72-79. | |
[115] | Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles [M]. New York: John Wiley& Sons Inc., |
1983. | |
[116] | Greenberg J M, Pedersen N E, Pedersen J C. Microwave analog to the scattering of light by nonspherical particles [J]. Journal |
of Applied Physics, 1961, 32(2): 233-242. | |
[117] | Gustafson B Å S. Microwave analog to light scattering measurements: A modern implementation of a proven method to |
achieve precise control [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 55(5): 663-672. | |
[118] | Waterman P C. Symmetry, unitarity, and geometry in electromagnetic scattering [J]. Physical Review D, 1971, 3(4): 825-839. |
[119] | Zerull R H, Giese R H, Weiss K. Scattering functions of nonspherical dielectric and absorbing particles VS Mie theory (E) |
[J] | Applied Optics, 1977, 16(4): 777-778. |
[120] | Zerull R H. Scattering measurements of dielectric and absorbing nonspherical particles [J]. Beitraege zur Physik der Atmosphaere, |
19 | 76, 49: 168-188. |
[121] | Allan L E, McCormick G C. Measurements of the backscatter matrix of dielectric spheroids [J]. IEEE Transactions on |
Antennas and Propagation, 1978, 26: 579-587. | |
[122] | Greenberg J M, Gustafson B Å S. A comet fragment model for zodiacal light particles [J]. Astronomy & Astrophysics, 1979, |
11 | (11): 35-42. |
[123] | Schuerman D W, Wang R T, Gustafson B Å S, et al. Systematic studies of light scattering. 1: Particle shape [J]. Applied |
Optics, 1981, 20(23): 4039-4050. | |
[124] | Wang R T, Greenberg J M, Schuerman D W. Experimental results of dependent light scattering by two spheres [J]. Optics |
Letters, 1981, 6(11): 543-545. | |
[125] | Fuller K A, Kattawar G W, Wang R T. Electromagnetic scattering from two dielectric spheres: Further comparisons between |
theory and experiment [J]. Applied Optics, 1986, 25(15): 2521-2529. | |
[126] | Chylek P, Srivastava V, Pinnick R G, et al. Scattering of electromagnetic waves by composite spherical particles: Experiment |
and effective medium approximations [J]. Applied Optics, 1988, 27(12): 2396-2404. | |
[127] | Hage J I, Greenberg J M, Wang R T. Scattering from arbitrarily shaped particles: Theory and experiment [J]. Applied Optics, |
19 | 91, 30(9): 1141-1152. |
[128] | Zerull R H, Gustafson B Å S, Schulz K, et al. Scattering by aggregates with and without an absorbing mantle: Microwave |
analog experiments [J]. Applied Optics, 1993, 32(21): 4088-4100. | |
[129] | Fuller K A, Stephens G L, Jersak B D. Some advances in understanding light scattering by nonspherical particles [C]. 8th |
Conference of Atmospheric Radiation, 1994. | |
[130] | Wang R T, Van de Hulst H C. Application of the exact solution for scattering by an infinite cylinder to the estimation of |
scattering by a finite cylinder [J]. Applied Optics, 1995, 34(15): 2811-2821. |
[1] | LI Shichun , ∗ , HUANG Zuxin , SHI Dongdong , XIN Wenhui , , SONG Yuehui , , GAO Fei , , HUA Dengxin , ∗. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872-879. |
[2] | CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang∗. Research progress of NO2 differential absorption lidar technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580-592. |
[3] | ZHANG Qinwei, CAO Lianzhen∗, LIU Xia, YANG Yang, ZHAO Jiaqiang, LI Yingde. Entanglement degradation of photon entangled states in non-Kolmogorov atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 496-503. |
[4] | LENG Kun, YANG Yuntao, TAN Zhe, GONG Yanchun, WU Wenyuan∗. Evaluation method of laser atmospheric transmission effectiveness based on support vector machine [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 547-555. |
[5] | YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579. |
[6] | ZHOU Zhenglan, ZHOU Yuan, XU Huafeng, QU Jun∗. Research progress of the partially coherent beams with special correlation functions [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 615-632. |
[7] | Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. |
[8] | XI Fengjie, YANG Yi, JING Xu, DU Shaojun, XU Xiaojun. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. |
[9] | YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian, ∗. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392-408. |
[10] | WANG Yingjian, ∗, SHI Dongfeng, . Atmospheric Effects on Optical Imaging and Correction Techniques [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409-417. |
[11] | HUANG Yinbo, CAO Zhensong, ∗, LU Xingji, HUANG Jun, LIU Qiang, DAI Congming, HUANG Honghua, Zhu Wenyue, RAO Ruizhong, WANG Yingjian, . Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 497-505. |
[12] | QIANG Xiwen, ZONG Fei, ZHAI Shengwei, FENG Shuanglian, WU Min, CHANG Jinyong, ZHANG Zhigang, HU Yuehong. Simulating and Measuring of Atmospheric Turbulence in Laboratory [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 506-512. |
[13] | GUAN Zhongyin, LI Bao, QIAN Jiali, DENG Lunhua, XU Huailiang, . Study on formation of CN radical in mixture of nitrogen and methane [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 144-149. |
[14] | LUO Jie, HOU Zai-hong, JING Xu WANG Zhen-dong, AN Yan-yang, QIN Lai-an WU Yi, QIU Chen-xiang, . Advances in Coherent Laser Wind Measurement Technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 129-137. |
[15] | LI Nan, QIAO Chunhong, ZHANG Pengfei, FENG Xiaoxing, FAN Chengyu. Research of Laser Propagation in the Non-Kolmogorov Turbulence Atmosphere and its Phase Compesation [J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 745-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||