Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (4): 497-505.
• Special Issue on Laser Propogation and Detection in Atmosphere • Previous Articles Next Articles
HUANG Yinbo1;2, CAO Zhensong1;2∗, LU Xingji1;2, HUANG Jun1;3, LIU Qiang1;2, DAI Congming1;2, HUANG Honghua1;2, Zhu Wenyue1;2, RAO Ruizhong1;2, WANG Yingjian1;2
Received:
2020-05-15
Revised:
2020-05-11
Published:
2020-07-28
Online:
2020-07-21
CLC Number:
HUANG Yinbo, CAO Zhensong, ∗, LU Xingji, HUANG Jun, LIU Qiang, DAI Congming, HUANG Honghua, Zhu Wenyue, RAO Ruizhong, WANG Yingjian, . Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 497-505.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Rao Ruizhong. Modern atmospheric optics and its application [J]. Journal of Atmospheric and Environmental Optics (大气 |
与环境光学学报), 2006, 1(1): 2-13 (in Chinese). | |
[2] | Rao Ruizhong, QiaoYanli, Wei Heli, et al. Research and application on optical properties of atmosphere in typical regions of |
China [J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2007, 2(6): 401-408 (in Chinese). | |
[3] | Gebhardt F G. Twenty-five years of thermal blooming: An overview [C]. Propagation of High-Energy Laser Beams Through |
the Earth’s Atmosphere, SPIE, 1990, 1221: 2-25. | |
[4] | Gebhardt F G. Atmospheric effects modeling for high energy laser systems [C]. Gas Flow and Chemical Lasers: Tenth |
International Symposium, SPIE, 1995, 2502: 101-110. | |
[5] | Wang Yingjian, Huang Yinbo. Analysis of the scaling laws about focused uniform beam spreading induced by real atmosphere |
[J] | Chinese Journal of Quantum Electronics (量子电子学报), 2006, 23(3): 274-281 (in Chinese). |
[6] | Huang Yingbo, Wang Yingjian. Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere |
[J] | Acta Physica Sinica (物理学报), 2006, 55(12): 6715-6719 (in Chinese). |
[7] | Zhan Jie, Guo Ruipeng, Rao Ruizhong. Measurement of atmospheric transmittance in the visible and near infrared [J]. Journal |
of Atmospheric and Environmental Optics (大气与环境光学学报), 2006, 1(3): 179-183 (in Chinese). | |
[8] | Cao Zhensong, Huang Yinbo, Wei Heli, et al. Research progress and related problems on the acquisition method of total |
atmospheric transmittance [J]. Infrared and Laser Engineering (红外与激光工程), 2019, 48(12): 1203004 (in Chinese). | |
[9] | Haught K M, Cordray D M. Long-path high-resolution atmospheric transmission measurements: Comparison with LOWTRAN |
3B | predictions [J]. Applied Optics, 1978, 17(17): 2668-2670. |
[10] | Berk A, Conforti P, Kennett R. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code [C]. Algorithms |
and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, SPIE, 2014, 9088: 10.1117/12.2050433. | |
[11] | Clough S A, Kneizys F X, Shettle E P, et al. Atmospheric radiance and transmittance: FASCOD2 [C]. Proceedings of the |
Sixth Conference on Atmospheric Radiation, American Meteorological Society, 1986: 141-144. | |
[12] | AlvaradoMJ, Payne V, Mlawer E J, et al. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature, |
water vapor, and trace gas retrievals: Recent updates evaluated with IASI case studies [J]. Atmospheric Chemistry and Physics, | |
20 | 13, 13(14): 6687-6711. |
[13] | Wei H, Chen X, Rao R, et al. A moderate-spectral resolution transmittance model based on fitting the line-by-line calculation |
[J] | Optics Express, 2007, 15(13): 8360-8370. |
[14] | Wei Heli, Chen Xiuhong, Dai Congming. Combined atmospheric radiative transfer (CART) model and its applications [J]. |
Infrared and Laser Engineering (红外与激光工程), 2012, 41(12): 3360-3366 (in Chinese). | |
[15] | Dai Congming,Wei Heli, Chen Xiuhong. Validation of the precision of atmospheric molecular absorption and thermal radiance |
calculated by combined atmospheric radiative transfer (CART) code [J]. Infrared and Laser Engineering (红外与激光工程), | |
20 | 13, 42(6): 1575-1581 (in Chinese). |
[16] | Zhan Jie, Tan Kun, Shao Shisheng, et al. Portable auto-control solar photometer [J]. Chinese Journal of Quantum Electronics |
(量子电子学报), 2001, 18(6): 551-555 (in Chinese). | |
[17] | L¨u Weiyu, Zhu Wenyue, Li Zhichao, et al. Measurements of atmospheric transmittance based on Fourier transform infrared |
spectrometer [J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2010, 5(1): 26-31 (in Chinese). | |
[18] | Shi Hailiang, Fang Yonghua, XiongWei, et al. Spatial heterodyne spectroscopy and application in atmospheric remote sensing |
[J] | Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2010, 5(6): 463-468 (in Chinese). |
[19] | Peyton B, Dinardo A, Cohen S, et al. An infrared heterodyne radiometer for high-resolution measurements of solar radiation |
and atmospheric transmission [J]. IEEE Journal of Quantum Electronics, 1975, 11: 569-574. | |
[20] | Parvitte B, Joly L, Z´eninari V, et al. Preliminary results of heterodyne detection with quantum-cascade lasers in the 9 m |
region [J]. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 2004, 60(14): 3285-3290. | |
[21] | Weidmann D, Tsai T, Macleod N A, et al. Atmospheric observations of multiple molecular species using ultra-high-resolution |
external cavity quantum cascade laser heterodyne radiometry [J]. Optics Letters, 2011, 36(11): 1951-1953. | |
[22] | Rodin A, Klimchuk A, Nadezhdinskiy A, et al. High resolution heterodyne spectroscopy of the atmospheric methane NIR |
absorption [J]. Optics Express, 2014, 22(11): 13825-13834. | |
[23] | Lu Xingji. Spectral Measurements of Greenhouse Gas by Laser Heterodyne Spectrometer and Retrieval Algorithm (激光外差 |
温室气体光谱测量与反演算法研究) [D]. Hefei: Doctorial Dissertation of University of Science and Technology of China, | |
20 | 19 (in Chinese). |
[24] | Wilson E L, Mclinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the |
atmospheric column [J]. Applied Physics B, 2014, 114(3): 385-393. | |
[25] | Hoffmann A, Macleod N A, Huebner M, et al. Thermal infrared laser heterodyne spectroradiometry for solar occultation |
atmospheric CO2 measurements [J]. Atmospheric Measurement Techniques, 2016, 9(12): 5975-5996. | |
[26] | Lerner J A, Weisz E, Kirchengast G. Temperature and humidity retrieval from simulated infrared atmospheric sounding interferometer |
(IASI) measurements [J]. Journal of Geophysical Research Atmospheres, 2002, 107(D14): ACH-1-ACH 4-11. | |
[27] | Hase F, Hannigan J W, Coffey M T, et al. Intercomparison of retrieval codes used for the analysis of high-resolution, groundbased |
FTIR measurements [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87(1): 25-52. | |
[28] | Tan Tu, Cao Zhensong, Wang Guishi, et al. Study on the technology of the 4.4 m mid-infrared laser heterodyne spectrum |
[J] | Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2015, 35(6): 1516-1519 (in Chinese). |
[29] | Wu Qingchuan. Study on Measurement Technology of High Spectral Total Atmospheric Transmittance (高分辨率整层大气 |
透过率直接测量技术研究) [D]. Hefei: Master Thesis of University of Science and Technology of China, 2017 (in Chinese). | |
[30] | Wu Qingchuan, Huang Yinbo, Tan Tu, et al. High-resolution atmospheric transmission measurement with a laser heterodyne |
radiometer [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2017, 37(6): 1678-1682 (in Chinese). | |
[31] | Molteni F, Buizza R, Palmer T N, et al. The ECMWF ensemble prediction system: Methodology and validation [J]. Quarterly |
Journal of the Royal Meteorological Society, 2010, 122(529): 73-119. | |
[32] | Chen Xiuhong,Wei Heli. Transplantation of LBLRTM fromWorkstation to PC [J]. Journal of Atmospheric and Environmental |
Optics (大气与环境光学学报), 2007, 2(2): 99-103 (in Chinese). | |
[33] | Chen Xiuhong, Wei Heli, Xu Qingshan. Infrared atmospheric transmittance calculation model [J]. Infrared and Laser Engineering |
(红外与激光工程), 2011, 40(5): 811-816 (in Chinese). | |
[34] | Lu Xingji, Cao Zhensong, Huang Yinbo, et al. Laser heterodyne spectrometer for solar spectrum measurement in the 3.53 m |
region [J]. Optical and Precision Engineering (光学精密工程), 2018, 26(8): 1846-1854 (in Chinese). | |
[35] | Lu Xingji, Cao Zhensong, Tan Tu, et al. Instrument line shape function of laser heterodyne spectrometer [J]. Acta Physica |
Sinica (物理学报), 2019, 68(6): 064208 (in Chinese). | |
[36] | Zhang Shanglu, Huang Yinbo, Lu Xingji, et al. Retrieval of atmospheric H2O column concentration based on mid-infrared |
inter-band cascade laser heterodyne radiometer [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2019, 39(4): | |
13 | 17-1322 (in Chinese). |
[1] | LI Shichun , ∗ , HUANG Zuxin , SHI Dongdong , XIN Wenhui , , SONG Yuehui , , GAO Fei , , HUA Dengxin , ∗. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872-879. |
[2] | CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang∗. Research progress of NO2 differential absorption lidar technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580-592. |
[3] | ZHANG Qinwei, CAO Lianzhen∗, LIU Xia, YANG Yang, ZHAO Jiaqiang, LI Yingde. Entanglement degradation of photon entangled states in non-Kolmogorov atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 496-503. |
[4] | LENG Kun, YANG Yuntao, TAN Zhe, GONG Yanchun, WU Wenyuan∗. Evaluation method of laser atmospheric transmission effectiveness based on support vector machine [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 547-555. |
[5] | YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579. |
[6] | ZHOU Zhenglan, ZHOU Yuan, XU Huafeng, QU Jun∗. Research progress of the partially coherent beams with special correlation functions [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 615-632. |
[7] | Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. |
[8] | XI Fengjie, YANG Yi, JING Xu, DU Shaojun, XU Xiaojun. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. |
[9] | YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian, ∗. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392-408. |
[10] | WANG Yingjian, ∗, SHI Dongfeng, . Atmospheric Effects on Optical Imaging and Correction Techniques [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409-417. |
[11] | HU Shuai, ∗, LIU Lei, ∗, LIU Xichuan, GAO Taichang, . Progress of measurement techniques of multi-angle scattering properties of atmospheric particles [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 477-496. |
[12] | QIANG Xiwen, ZONG Fei, ZHAI Shengwei, FENG Shuanglian, WU Min, CHANG Jinyong, ZHANG Zhigang, HU Yuehong. Simulating and Measuring of Atmospheric Turbulence in Laboratory [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 506-512. |
[13] | GUAN Zhongyin, LI Bao, QIAN Jiali, DENG Lunhua, XU Huailiang, . Study on formation of CN radical in mixture of nitrogen and methane [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 144-149. |
[14] | LUO Jie, HOU Zai-hong, JING Xu WANG Zhen-dong, AN Yan-yang, QIN Lai-an WU Yi, QIU Chen-xiang, . Advances in Coherent Laser Wind Measurement Technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 129-137. |
[15] | LI Nan, QIAO Chunhong, ZHANG Pengfei, FENG Xiaoxing, FAN Chengyu. Research of Laser Propagation in the Non-Kolmogorov Turbulence Atmosphere and its Phase Compesation [J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 745-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||