Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (5): 556-565.
• Special Issue on Laser Propogation and Detection in Atmosphere • Previous Articles Next Articles
HUANG Jian1,2∗, DENG Ke1,2
Received:
2020-04-03
Revised:
2020-04-09
Published:
2020-09-28
Online:
2020-09-28
CLC Number:
HUANG Jian, ∗, DENG Ke, . Theoretical challenges in the research of atmospheric coherent laser communication[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 556-565.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Sodnik Z, Sans M. Extending EDRS to laser communication from space to ground [C]. Proceedings of International Conference |
on Space Optical Systems and Applications, 2012, 12: 9-14. | |
[2] | Zech H, Heine F, Tr¨ondle D, et al. LCT for EDRS: LEO to GEO optical communications at 1, 8 Gbps between Alphasat and |
Sentinel 1a [C]. Proceedings of SPIE, 2015, 9647: 96470J. | |
[3] | Seel S, K¨ampfner H, Heine F, et al. Space to ground bidirectional optical communication link at 5. 6 Gbps and EDRS connectivity |
outlook [C]. Proceedings of IEEE, 2011: 1-7. | |
[4] | Hauschildt H, Gallou N, Mezzasoma S, et al. Global quasi-real-time-services back to Europe: EDRS Global [C]. Proceedings |
of SPIE, 2019, 11180: 111800X. | |
[5] | Saucke K, Seiter C, Heine F, et al. The Tesat transportable adaptive optical ground station [C]. Proceedings of SPIE, 2016, |
97 | 39: 973906. |
[6] | Winick K. Atmospheric turbulence-induced signal fades on optical heterodyne communication links [J]. Applied Optics, 1986, |
25 | (11): 1817-1825. |
[7] | Liu C, Chen S Q, Li X Y, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications [J]. |
Optics Express, 2014, 22(13): 15554-15563. | |
[8] | Belmonte A, Kahn J. Performance of synchronous optical receivers using atmospheric compensation techniques [J]. Optics |
Express, 2008, 16(18): 14151-14162. | |
[9] | Zhu X M, Kahn J. Free-space optical communication through atmospheric turbulence channels [J]. IEEE Transactions on |
Communications, 2002, 50(8): 1293-1300. | |
[10] | Huang J, Mei H P, Deng K, et al. Signal to noise ratio of free space homodyne coherent optical communication after adaptive |
optics compensation [J]. Optics Communications, 2015, 356: 574-577. | |
[11] | Ma J, Ma L, Yang Q B, et al. Statistical model of the efficiency for spatial light coupling into a single-mode fiber in the |
presence of atmospheric turbulence [J]. Applied Optics, 2015, 54(31): 9287-9293. | |
[12] | Horwath J, David F, Knapek M, et al. Coherent transmission feasibility analysis [C]. Proceedings of SPIE, 2005, 5712: 13-23. |
[13] | Cao J T, Zhao X H, Liu W, et al. Performance analysis of a coherent free space optical communication system based on |
experiment [J]. Optics Express, 2017, 25(13): 15299-15312. | |
[14] | Liu C, Chen M, Chen S Q, et al. Adaptive optics for the free-space coherent optical communications [J]. Optics Communications, |
20 | 16, 361: 21-24. |
[15] | Huang J, Deng K, Liu C, et al. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication |
[J] | Optics Express, 2014, 22(13): 16000-16007. |
[16] | Anbarasi K, Hemanth C, Sangeetha R. A review on channel models in free space optical communication systems [J]. Optics |
and Laser Technology, 2017, 97: 161-171. | |
[17] | Rao Ruizhong. Light Propagation in The Turbulent Atmosphere (光在湍流大气中的传播) [M]. Hefei: Anhui Science and |
Technology Press, 2005 (in Chinese). | |
[18] | Wang T, Strohbehn J. Log-normal paradox in atmospheric scintillations [J]. Journal of the Optical Society of America A, 1974, |
64 | (5): 583-591. |
[19] | Andrews L, Phillips R. Laser Beam Propagation Through Random Media [M]. Bellingham: SPIE Press, 2005. |
[20] | Huang J. Non-lognormal probability density function of scintillation in weak regime [C]. Optical Society of America, 2017: |
PW2D. 3. [21] Johns Hopkins Turbulence Database (JHTDB) [OL]. http://turbulence. pha. jhu. edu/. | |
[22] | Deep Turbulence MURI [OL]. https://sites. google. com/site/deepturbulencemuri/home. |
[23] | Huang J, Liu C, Deng K, et al. Probability of the residual wavefront variance of an adaptive optics system and its application |
[J] | Optics Express, 2016, 24(3): 2818-2829. |
[24] | Hardy J. Adaptive Optics for Astronomical Telescopes [M]. Oxford University Press, 1998. |
[25] | Tyson R. Principles of Adaptive Optics [M]. 3nd ed., CRC press, 2010. |
[26] | Berkefeld T, Soltau D, Czichy R, et al. Adaptive optics for satellite-to-ground laser communication at the 1 m telescope of the |
ESA Optical Ground Station, Tenerife, Spain [C]. Proceedings of SPIE, 2010, 7736: 77364C. | |
[27] | Tyson R, Canning D E. Bit-error rate improvement of a laser communication system with low-order adaptive optics [C]. |
Proceedings of SPIE, 2002, 4821: 82-87. | |
[28] | Roberts L, Page N, Burruss R S, et al. Conceptual design of the adaptive optics system for the laser communication relay |
demonstration ground station at Table Mountain [C]. Proceedings of SPIE, 2013, 8610: 86100N. | |
[29] | Wang S F, Wang X T, Zou X Y, et al. Experiment layout of space laser communication system based on adaptive optical |
system [J]. Advanced Materials Research, 2011, 287: 3020-3023. | |
[30] | Anzuola E, Belmonte A. Experimental analysis of adaptive optics compensation in free-space coherent laser communications |
[C] | Proceedings of SPIE, 2016, 9979: 99790M. |
[31] | Weyrauch T, Vorontsov M. Free-space laser communications with adaptive optics: Atmospheric compensation experiments |
[J] | Journal of Optical and Fiber Communications Reports, 2004, 1: 355-379. |
[32] | Schwartz N, V´edrenne N, Michau V, et al. Mitigation of atmospheric effects by adaptive optics for free-space optical communications |
[C] | Proceedings of SPIE, 2009, 7200: 72000J. |
[33] | Gladysz S, Christou J, Bradford L, et al. Temporal variability and statistics of the Strehl ratio in adaptive-optics images [J]. |
Publications of the Astronomical Society of the Pacific, 2008, 120(872): 1132. | |
[34] | Yaitskova N, Esselborn M, Gladysz S. Statistical moments of the Strehl ratio [C]. Proceedings of SPIE, 2012, 8447: 84475Y. |
[35] | Christou J, Mighell K, Makidon R. Strehl ratio and image sharpness for adaptive optics [C]. Proceedings of SPIE, 2006, 6272: |
62 | 721Y. |
[36] | Yura H, Fried D. Variance of the Strehl ratio of an adaptive optics system [J]. Journal of the Optical Society of America A, |
19 | 98, 15(8): 2107-2110. |
[37] | Huang J, Zhou H, Yang J S, et al. Temporal statistics of residual wavefront variance of an adaptive optics system [J]. Journal |
of Optics, 2019, 21(12): 125606. | |
[38] | Cao G R,Yu X. Accuracy analysis of a Hartmann-Shack wavefront sensor operated with a faint object [J]. Optical Engineering, |
19 | 94, 33(7): 2331-2336. |
[39] | Noll R. Zernike polynomials and atmospheric turbulence [J]. Journal of the Optical Society of America A, 1976, 66(3): 207- |
211. |
[1] | YAN Zhiwu , GU Naiting , RAO Changhui , . A calibration method for temperature sensors of large ground⁃based solar telescope [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 588-596. |
[2] | CHEN Yukai , , PU Tao , ZHENG Jilin ∗ , LI Yunkun , YU Nan , CAO Yang . Research on performance of phase shift keying quantum-noise randomized cipher system [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 846-854. |
[3] | YANG Fan, REN Guohao. Development of ultrafast scintillation crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 243-258. |
[4] | ZHANG Li, WANG Jingyuan, ZHENG Jilin, ZHANG Han, PU Tao. Performance of circular polarization modulation in atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 737-744. |
[5] | WANG Yingjian, ∗, SHI Dongfeng, . Atmospheric Effects on Optical Imaging and Correction Techniques [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409-417. |
[6] | BO Yong, BIAN Qi, PENG Qinjun, XU Zuyan, WEI Kai, ZHANG Yudong, FENG Lu, XUE Suijian. Development of Sodium Beacon Laser [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 430-446. |
[7] | HUANG Jiaying, ZHU Lei, YANG Feng, RAO Changhui, ∗. Correction of shape and position errors of distributed holographic aperture imaging system [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 456-465. |
[8] | ZHAO Wang, ZHAO Mengmeng, WANG Shuai, YANG Ping, . Influence of near ground phase vortex on the correction of adaptive optics [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 466-476. |
[9] | QIANG Xiwen, ZONG Fei, ZHAI Shengwei, FENG Shuanglian, WU Min, CHANG Jinyong, ZHANG Zhigang, HU Yuehong. Simulating and Measuring of Atmospheric Turbulence in Laboratory [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 506-512. |
[10] | MOU Weifeng, PU Tao, ZHENG Jilin. Performance Analysis of Relay-Assisted Noncoplanar Ultraviolet Scattering Communication Over Turbulent Channels [J]. Chinese Journal of Quantum Electronics, 2020, 37(1): 83-87. |
[11] | LI Nan, QIAO Chunhong, ZHANG Pengfei, FENG Xiaoxing, FAN Chengyu. Research of Laser Propagation in the Non-Kolmogorov Turbulence Atmosphere and its Phase Compesation [J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 745-751. |
[12] | TAO Zaihong1,2, WANG Tingting1,2, KONG Chunxia3. Investigation on mechanism of distributed fiber quantum sensing based on Raman scattering [J]. Chinese Journal of Quantum Electronics, 2019, 36(5): 635-640. |
[13] | ZHANG Shijun 1,ZHANG Wenhai 2. Probabilistic quantum cloning of two states with arbitrary a prior probabilities [J]. Chinese Journal of Quantum Electronics, 2019, 36(4): 471-475. |
[14] | WANG Qingliang, REN Hengfeng . Influence of low-intensity magnetic field on quantum information transfer in N=3 spin chain [J]. J4, 2016, 33(6): 724-728. |
[15] | WANG Guo-wei, CHENG Qing-hua, XU Da-hai. Steady-state analysis of an asymmetric bistable system driven by cross-correlated noises with periodic signal [J]. J4, 2014, 31(1): 86-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||