Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (5): 566-579.
• Special Issue on Laser Propogation and Detection in Atmosphere • Previous Articles Next Articles
YANG Yong1, CHENG Xuewu1, YANG Guotao2, XUE Xianghui3, LI Faquan1∗
Received:
2020-06-22
Revised:
2020-07-12
Published:
2020-09-28
Online:
2020-09-28
CLC Number:
YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Emmert J T. Thermospheric mass density: A review [J]. Advances in Space Research, 2015, 56(5): 773-824. |
[2] | Roble R G, Dickinson R E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere |
and thermosphere? [J]. Geophysical Research Letters, 1989, 16(12): 1441-1444. | |
[3] | Yan Jixiang, Gong Shunsheng, Liu Zhishen. Lidar for Environment Monitoring (环境监测激光雷达) [M]. Beijing: Science |
Press, 2001 (in Chinese). | |
[4] | Sun Jinhui, Xia Qilin, Qiu Jinhuan, et al. Lidar observations of polar startospheric clouds in Antarctica [J]. Chinese Journal of |
Polar Research (极地研究), 1995, 7(1): 44-49 (in Chinese). | |
[5] | Wu Yonghua, Hu Huanling, Zhou Jun, et al. Measurements of stratosphere aerosol with L625 lidar [J]. Acta Optica Sinica (光 |
学学报) | , 2001, 21(8): 1012-1015 (in Chinese). |
[6] | Hu Shunxing, Hu Huanling, Zhang Yinchao, et al. Differential absorption lidar for environmental SO2 measurements [J]. |
Chinese Journal of Lasers (中国激光), 2004, 31(9): 1121-1126 (in Chinese). | |
[7] | Dong Yunsheng, Liu Wenqing, Liu Jianguo, et al. Application study of lidar in urban traffic pollution [J]. Acta Optica Sinica |
(光学学报), 2010, 30(2): 315-320 (in Chinese). | |
[8] | Gardner C S, Voelz D G. Lidar measurements of gravity-wave saturation effects in the sodium layer [J]. Geophysical Research |
Letters, 1985, 12(11): 765-768. | |
[9] | Chen H L, White M A, Krueger D A, et al. Daytime mesopause temperature measurements with a sodium-vapor dispersive |
Faraday filter in a lidar receiver [J]. Optics Letters, 1996, 21(15): 1093-1095. | |
[10] | She C Y, Sherman J, Yuan T, et al. The first 80 hour continuous lidar campaign for simultaneous observation of mesopause |
region temperature and wind [J]. Geophysical Research Letters, 2003, 30(6): 1319. | |
[11] | Marlton G, Charlton P A, Harrison G, et al. Using a global network of temperature lidars to identify temperature biases in the |
upper stratosphere in ECMWF reanalyses [J]. Atmospheric Chemistry and Physics Discussions, 2020: 1-20. | |
[12] | Cheng X W, Gong S S, Li F Q, et al. 24 h continuous observation of sodium layer over Wuhan by lidar [J]. Science in China |
Series G-Physics Mechanics & Astronomy, 2007, 50(3): 287-293. | |
[13] | Arnold K S, She C Y. Metal fluorescence lidar (light detection and ranging) and the middle atmosphere [J]. Contemporary |
Physics, 2003, 44(1): 35-49. | |
[14] | Yang Y L, Yang Y, Xia Y, et al. Solid-state 589 nm seed laser based on Raman fiber amplifier for sodium wind/temperature |
lidar in Tibet, China [J]. Optics Express, 2018, 26(13): 16226. | |
[15] | Zheng Wengang, Li Hongjun, Yang Guotao, et al. Lidar detection of the atmospheric densityand temperature over Wuhan [J]. |
Scientia Atmospherica Sinica (大气科学), 1999, 23(4): 397-402 (in Chinese). | |
[16] | Lv Hongfang, Yi Fan. Gravity wave characteristics observed by lidar and radiosonde in Wuhan [J]. Chinese Journal of Geophysics |
(地球物理学报), 2006, 49(6): 1582-1587 (in Chinese). | |
[17] | Wang Xiaobin, Sun Shuji, Chen Chun, et al. Lidar observations of middle atmospheric density and temperature over Qingdao |
[J] | Chinese Journal of Space Science (空间科学学报), 2011, 31(6): 778-783 (in Chinese). |
[18] | Wu Yonghua, Hu Huanling, Hu Shunxing, et al. Rayleigh-Raman scattering lidar for atmospheric temperature profiles measurements |
[J] | Chinese Journal of Lasers (中国激光), 2004, 31(7): 851-856 (in Chinese). |
[19] | Li Y J, Lin X, Song S L, et al. A combined rotational Raman-Rayleigh lidar for atmospheric temperature measurements over |
5∼ | 80 km with self-calibration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7055-7065. |
[20] | Cooney J. Measurement of atmospheric temperature profiles by Raman backscatter [J]. Journal of Applied Meteorology, 1972, |
11 | (1): 108-112. |
[21] | Arshinov Y F, Bobrovnikov S M, Zuev V E, et al. Atmospheric temperature measurements using a pure rotational Raman lidar |
[J] | Applied Optics, 1983, 22(19): 2984-2990. |
[22] | Girolamo P. Rotational Raman lidar measurements of atmospheric temperature in the UV [J]. Geophysical Research Letters, |
20 | 04, 31(1): L01106. |
[23] | Gibson A J, Thomas L, Bhattachacharyya S K. Laser observations of the ground-state hyperfine structure of sodium and of |
temperatures in the upper atmosphere [J]. Nature, 1979, 281: 131-132. | |
[24] | Fricke K H, von Zahn U. Mesopause temperatures derived from probing the hyperfine-structure of the D2 resonance line of |
sodium by lidar [J]. Journal of Atmospheric and Terrestrial Physics, 1985, 47(5): 499-512. | |
[25] | Bills R E, Gardner C S, She C Y. Narrow-band lidar technique for sodium temperature and Doppler wind observations of the |
upper-atmosphere [J]. Optical Engineering, 1991, 30(1): 13-21. | |
[26] | Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind [J]. |
Applied Optics, 2012, 51(22): 5401. | |
[27] | Gelbwachs J A. Iron Boltzmann factor lidar - proposed new remote-sensing technique for meospheric temperature [J]. Applied |
Optics, 1994, 33(30): 7151-7156. | |
[28] | Papen G C, Treyer D. Comparison of an Fe Boltzmann temperature lidar with a Na narrow-band lidar [J]. Applied Optics, 1998, |
37 | : 8477-8481. |
[29] | Chu X Z, Pan W, Papen G C, et al. Fe Boltzmann temperature lidar: Design, error analysis, and initial results at the North and |
South Poles [J]. Applied Optics, 2002, 41(21): 4400-4410. | |
[30] | Yu C M, Yi F. Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements [J]. Journal |
of Atmospheric & Solar Terrestrial Physics, 2008, 70(10): 1281-1288. | |
[31] | Tepley C A. Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar [J]. Journal of |
Geophysical Research-Atmospheres, 1994, 99(D12): 25781-25790. | |
[32] | Li F Q, Yang Y, Cheng X W, et al. The techniques and progress of wind and temperature lidar in WIPM [J]. EPJ Web of |
Conferences, 2016, 119: 12002. | |
[33] | Korb C L, Gentry B M, Li S X F. Edge technique Doppler lidar wind measurements with high vertical resolution [J]. Applied |
Optics, 1997, 36(24): 5976-5983. | |
[34] | Liu Z S,Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering |
by Doppler lidar with an iodine filter [J]. Applied Optics, 2002, 41(33): 7079. | |
[35] | Franke S J, Chu X Z, Liu A Z, et al. Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause |
region above Maui, Hawaii [J]. Journal of Geophysical Research-Atmospheres, 2005, 110(D9): D09S02. | |
[36] | Huang W T, Chu X Z, Wiig J, et al. Field demonstration of simultaneous wind and temperature measurements from 5 to 50 |
km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar [J]. Optics Letters, 2009, 34(10): 1552. | |
[37] | Baumgarten G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to |
80 | km [J]. Atmospheric Measurement Techniques, 2010, 3: 1509-1518. |
[38] | Xu L, Hu X, Cheng Y Q, et al. Simulation of echo-photon counts of a sodium Doppler lidar and retrievals of atmospheric |
parameters [J]. Chinese Journal of Geophysics-Chinese Edition, 2010, 53(7): 1520-1528. | |
[39] | Dou X K, Han Y L, Sun D S, et al. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere |
and lower mesosphere [J]. Optics Express, 2014, 22(S5): A1203. | |
[40] | Yuan T, Yue J, She C Y, et al. Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption |
spectroscopy [J]. Applied Optics, 2009, 48(20): 3988-3993. | |
[41] | Lv D R, Pan W L, Wang Y N. Atmospheric profiling synthetic observation system in Tibet [J]. Advances in Atmospheric |
Sciences, 2018, 35(3): 264-267. | |
[42] | Zhang Wei, Wu Songhua, Song Xiaoquan, et al. Atmospheric boundary layer detected by a Fraunhofer lidar over Qingdao |
suburb [J]. Acta Optica Sinica (光学学报), 2013, 33(6): 0628002 (in Chinese). | |
[43] | H¨offner J, Fricke B C. Accurate lidar temperatures with narrowband filters [J]. Optics Letters, 2005, 30(8): 890-892. |
[44] | Yang Y, Cheng X W, Li F Q, et al. A flat spectral Faraday filter for sodium lidar [J]. Optics Letters, 2011, 36(7): 1302-1304. |
[45] | Wang Feng, Hu Xiaoyang, Ye Yidong. Development of ultra-narrow band filter technique [J]. Laser Optoelectronics Progress |
[46] | Gong Shunsheng, Cheng Xuewu, Li Faquan, et al. Application of atomic controlled optical channel in opto-electronic system |
[J] | Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(1): 1-6 (in Chinese). |
[47] | Du L F,Wang J H,Yang Y, et al. Continuous detection of diurnal sodium fluorescent lidar over Beijing in China [J]. Atmosphere, |
20 | 20, 11(1): 1-14. |
[48] | Xia Y, Cheng X W, et al. Sodium lidar observation over full diurnal cycles in Beijing, China [J]. Applied Optics, 2020, 59(6): |
15 | 29-1536. |
[49] | Fricke B C, Alpers M, Hoffner J. Daylight rejection with a new receiver for potassium resonance temperature lidars [J]. Optics |
Letters, 2002, 27(21): 1932-1934. | |
[50] | Lu Honghui, Yang Guotao, Wang Jihong, et al. Investigation of tidal wave activities over Wuhan by daytime sodium lidar [J]. |
Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(1): 17-24 (in Chinese). | |
[51] | Cheng X W, Yang Y, Wang Z L, et al. Joint observation results of Na layer and ionosphere in Wuhan during the Total Solar |
Eclipse [J]. Science China Earth Sciences, 2016, 59(4): 418-424. | |
[52] | Liu X, Xu J Y. Daytime lidar measurements of the sodium layer in China [J]. Science China Earth Sciences, 2016, 59(8): |
17 | 07-1708. |
[53] | BowmanM R, Gibson A J, Sandford M CW. Observation of mesospheric Na atoms by tuner laser radar [J]. Nature, 1969, 221: |
45 | 6-457. |
[54] | Rowlett J R, Gardner C S, Richter E S, et al. Lidar observations of wave-like structure in atmospheric sodium layer [J]. |
Geophysical Research Letters, 1978, 5(8): 683-686. | |
[55] | Clemesha B R. Sporadic neutral metal layers in the mesosphere and lower thermosphere [J]. Journal of Atmospheric and |
Terrestrial Physics, 1995, 57(7): 725-736. | |
[56] | Gong S S, Zeng X Z, Xue X J, et al. First time observation of sodium layer over Wuhan, China by sodium fluorescence lidar |
[J] | Science in China Series A, 1997, 40(11): 1228-1232. |
[57] | Plane J M C, Bailey S M, Baumgarten G, et al. Layered phenomena in the mesopause region [J]. Journal of Atmospheric and |
Solar-Terrestrial Physics, 2015, 127: 1-2. | |
[58] | H¨offner J, Friedman J S. The mesospheric metal layer topside: A possible connection to meteoroids [J]. Atmospheric Chemistry |
and Physics, 2004, 4(3): 801-808. | |
[59] | Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy |
[J] | Nature, 1987, 328(6127): 229-231. |
[60] | Pique J P, Moldovan I C, Fesquet V. Concept for polychromatic laser guide stars: One-photon excitation of the 4P3=2 level of a |
sodium atom [J]. Journal of the Optical Society of America A, 2006, 23(11): 2817-2828. | |
[61] | Li Faquan, Cheng Xuewu, Yang Yong, et al. Research on preparation and imaging of upper atmosphere sodium laser guide |
star [J]. Scientia Sinica (中国科学), 2011, 41(11): 1261-1267 (in Chinese). | |
[62] | Higbie J M, Rochester S M, Patton B, et al. Magnetometry with mesospheric sodium [J]. Proceedings of the National Academy |
of Sciences of the United States of America, 2011, 108(9): 3522-3525. | |
[63] | Pedreros B F, Bonaccini C D, Budker D, et al. Remote sensing of geomagnetic fields and atomic collisions in the mesosphere |
[J] | Nature Communications, 2018, 9(1): 3981. |
[64] | Fan T W, Yang X Z, Dong J Y, et al. Remote magnetometry with mesospheric sodium based on gated photon counting [J]. |
Journal of Geophysical Research: Space Physics, 2019, 124(9): 7505-7512. | |
[65] | Plane J M C. The chemistry of meteoric metals in the Earth’s upper-atmosphere [J]. International Reviews in Physical Chemistry, |
19 | 91, 10(1): 55-106. |
[66] | Gong S S, Yang G T, Wang J M, et al. A double sodium layer event observed over Wuhan, China by lidar [J]. Geophysical |
Research Letters, 2003, 30(5): 13. | |
[67] | Wang J H, Yang Y, Cheng XW, et al. Double sodium layers observation over Beijing, China [J]. Geophysical Research Letters, |
20 | 12, 39(15): L15801. |
[68] | Xue X H, Dou X K, Lei J H, et al. Lower thermospheric-enhanced sodium layers observed at low latitude and possible |
formation: Case studies [J]. Journal of Geophysical Research: Space Physics, 2013, 118: 2409-2418. | |
[69] | Zhang T M, Wang J H, Fu J, et al. Observation of the double sodium layer over Haikou, China by lidar [J]. Chinese Journal of |
Space Science, 2013, 33(4): 410-412. | |
[70] | Jiao J, Yang G T,Wang J H, et al. Sporadic potassium layers and their connection to sporadic E layers in the mesopause region |
at Beijing, China [J]. Solar-Terrestrial Physics, 2017, 3(2): 64-69. | |
[71] | Xun Y C, Yang G T, She C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central |
midlatitude lidar stations [J]. Geophysical Research Letters, 2019, 46(4): 1892-1899. | |
[72] | Xun Y C, Yang G T, She C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central |
midlatitude lidar stations [J]. Geophysical Research Letters, 2019, 46(4): 1892-1899. | |
[73] | Wang Y F, Wang W, Xie Y R, et al. Vibrational overtone excitation of D2 in a molecular beam with a high-energy, narrowbandwidth, |
nanosecond optical parametric oscillator/amplifier [J]. Review of Scientific Instruments, 2020, 91(5): 053001. | |
[74] | Wu F J, Zheng H R, Cheng X W, et al. Simultaneous detection of the Ca and Ca+ layers by a dual-wavelength tunable lidar |
system [J]. Applied Optics, 2020, 59(13): 4122-4130. | |
[75] | Gerding M, Alpers M, Hoffner J, et al. Sporadic Ca and Ca+ layers at mid-latitudes: Simultaneous observations and implications |
for their formation [J]. Annales Geophysicae, 2001, 19(1): 47-58. | |
[76] | Wang Chi. New chains of space weather monitoring stations in China [J]. Space Weather, 2010, 8(8): S08001. |
[77] | Dou X K, Xue X H, Chen T D, et al. A statistical study of sporadic sodium layer observed by sodium lidar at Hefei (31.8◦ N, |
11 | 7.3◦ E) [J]. Annales Geophysicae, 2009, 27(6): 2247-2257. |
[1] | GONG Wenlin ∗ , CHEN Mingliang , HAN Shensheng ∗. Research Progress and Prospect On Ghost Imaging Lidar [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 835-850. |
[2] | CAO Ye, CHENG Liangliang, YANG Hao, FANG Zhiyuan, LI Lu, DENG Xu, XING Kunming, WANG Bangxin, XIE Chenbo, . Design of lidar data acquisition system based on FPGA [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 620-631. |
[3] | LIU Chenkai, HU Mingyong ∗ , LI Zhaoyang, SUN Dongqi, FENG Zhiwei, CAI Xiaobo. Design of a multi-wavelength lidar optical system [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 806-814. |
[4] | LI Shichun , ∗ , HUANG Zuxin , SHI Dongdong , XIN Wenhui , , SONG Yuehui , , GAO Fei , , HUA Dengxin , ∗. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872-879. |
[5] | CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang∗. Research progress of NO2 differential absorption lidar technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580-592. |
[6] | ZHANG Qinwei, CAO Lianzhen∗, LIU Xia, YANG Yang, ZHAO Jiaqiang, LI Yingde. Entanglement degradation of photon entangled states in non-Kolmogorov atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 496-503. |
[7] | LENG Kun, YANG Yuntao, TAN Zhe, GONG Yanchun, WU Wenyuan∗. Evaluation method of laser atmospheric transmission effectiveness based on support vector machine [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 547-555. |
[8] | ZHOU Zhenglan, ZHOU Yuan, XU Huafeng, QU Jun∗. Research progress of the partially coherent beams with special correlation functions [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 615-632. |
[9] | Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. |
[10] | XI Fengjie, YANG Yi, JING Xu, DU Shaojun, XU Xiaojun. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. |
[11] | YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian, ∗. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392-408. |
[12] | WANG Yingjian, ∗, SHI Dongfeng, . Atmospheric Effects on Optical Imaging and Correction Techniques [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409-417. |
[13] | HU Shuai, ∗, LIU Lei, ∗, LIU Xichuan, GAO Taichang, . Progress of measurement techniques of multi-angle scattering properties of atmospheric particles [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 477-496. |
[14] | HUANG Yinbo, CAO Zhensong, ∗, LU Xingji, HUANG Jun, LIU Qiang, DAI Congming, HUANG Honghua, Zhu Wenyue, RAO Ruizhong, WANG Yingjian, . Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 497-505. |
[15] | QIANG Xiwen, ZONG Fei, ZHAI Shengwei, FENG Shuanglian, WU Min, CHANG Jinyong, ZHANG Zhigang, HU Yuehong. Simulating and Measuring of Atmospheric Turbulence in Laboratory [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 506-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||