Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (6): 692-698.
• Quantum Optics • Previous Articles Next Articles
WANG Dong 1,2, ZHANG Hua 1, YAN Fei 1, ZHANG Yunhan 1, SONG Xiaotian 1,2, ZHAO Yibo 1,2
Received:
2020-02-27
Revised:
2020-06-03
Published:
2020-11-28
Online:
2020-11-28
Contact:
Yi BoZhao
E-mail:zhaoyibo@mail.ustc.edu.cn
CLC Number:
WANG Dong , ZHANG Hua , YAN Fei , ZHANG Yunhan , SONG Xiaotian , ZHAO Yibo , . Analysis of 1-decoy state quantum digital signature protocol[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 692-698.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Diffie W, Hellman M. New directions in cryptography [J]. IEEE Transactions on Information Theory, 1976, 22(6): 644-654. |
[2] | Rivest R L. Cryptography [M]. Algorithms and Complexity Elsevier, 1990: 717-755. |
[3] | Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems [J]. Communications |
of the ACM, 1978, 21(2): 120-126. | |
[4] | ElGamal T. A public key crypto-system and a signature scheme based on discrete logarithms [J]. IEEE Transactions on Information |
Theory, 1985, 31(4): 469-472. | |
[5] | Johnson D, Menezes A, Vanstone S. The elliptic curve digital signature algorithm (ECDSA) [J]. International Journal of |
Information Security, 2001, 1(1): 36-63. | |
[6] | Gottesman D, Chuang I. Quantum digital signatures [J]. 2001, arXiv preprint quant-ph/0105032. |
[7] | Dunjko V, Wallden P, Andersson E. Quantum digital signatures without quantum memory [J]. Physical Review Letters, 2014, |
11 | 2(4): 040502. |
[8] | Arrazola J M, L¨utkenhaus N. Quantum communication with coherent states and linear optics [J]. Physical Review A, 2014, |
90 | (4): 042335. |
[9] | Wallden P, Dunjko V,Kent A, et al. Quantum digital signatures with quantum-key-distribution components [J]. Physical Review |
A, 2015, 91(4): 042304. | |
[10] | Amiri R, Wallden P, Kent A, et al. Secure quantum signatures using insecure quantum channels [J]. Physical Review A, 2016, |
93 | (3): 032325. |
[11] | Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance [J]. Optics |
Letters, 2018, 43(9): 2030-2033. | |
[12] | Zhang Ziping, Liu Guojun, Lu Xu, et al. Security performance analysis of quantum key distribution protocol based on depolarization |
channel [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2019, 36(4): 464-470 (in Chinese). | |
[13] | Sha Yitian, Feng Bao, Jia Wei, et al. A method to eliminate the influence of statistical fluctuation on the source parameters for |
quantum key distribution [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2020, 37(1): 57-62 (in Chinese). | |
[14] | Clarke P J, Collins R J, Dunjko V, et al. Experimental demonstration of quantum digital signatures using phase-encoded |
coherent states of light [J]. Nature Communications, 2012, 3(1): 1-8. | |
[15] | Collins R J, Donaldson R J, Dunjko V, et al. Realization of quantum digital signatures without the requirement of quantum |
memory [J]. Physical Review Letters, 2014, 113(4): 040502. | |
[16] | Donaldson R J, Collins R J, Kleczkowska K, et al. Experimental demonstration of kilometer-range quantum digital signatures |
[J] | Physical Review A, 2016, 93(1): 012329. |
[17] | Collins R J, Amiri R, Fujiwara M, et al. Experimental transmission of quantum digital signatures over 90 km of installed |
optical fiber using a differential phase shift quantum key distribution system [J]. Optics Letters, 2016, 41(21): 4883-4886. | |
[18] | Collins R J, Amiri R, Fujiwara M, et al. Experimental demonstration of quantum digital signatures over 43 dB channel loss |
using differential phase shift quantum key distribution [J]. Scientific Reports, 2017, 7(1): 1-8. | |
[19] | Zhang C H, Zhou X Y, Ding H J, et al. Proof-of-principle demonstration of passive decoy-state quantum digital signatures over |
20 | 0 km [J]. Physical Review Applied, 2018, 10(3): 034033. |
[20] | An X B, Zhang H, Zhang C M, et al. Practical quantum digital signature with a gigahertz BB84 quantum key distribution |
system [J]. Optics Letters, 2019, 44(1): 139-142. | |
[21] | Ding H J, Chen J J, Ji L, et al. 280 km experimental demonstration of quantum digital signature with one decoy state [J]. Optics |
Letters, 2020, 45(7): 1711-1714. | |
[23] | Yin H L, Wang W L, Tang Y L, et al. Experimental measurement-device-independent quantum digital signatures over a |
metropolitan network [J]. Physical Review A, 2017, 95(4): 042338. | |
Roberts G L, Lucamarini M, Yuan Z L, et al. Experimental measurement-device-independent quantum digital signatures [J]. | |
Nature Communications, 2017, 8(1): 1-7. | |
[24] | Chen J M, Zhang H, Zhou X Y, et al. Practical decoy-state quantum digital signature with optimized parameters [J]. Physica |
A: Statistical Mechanics and Its Applications, 2019, 535: 122341. | |
[25] | Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, |
20 | 03, 91: 057901. |
[26] | Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, |
94 | : 230503. |
[27] | Lo H K, Ma X F, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94: 230504. |
[28] | Brassard G, L¨utkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, |
85 | : 1330. |
[29] | Rusca D, Boaron A, Gr¨unenfelder F, et al. Finite-key analysis for the 1-decoy state QKD protocol [J]. Applied Physics Letters, |
20 | 18, 112(17): 171104. |
[30] | He D Y, Wang S, Chen W, et al. Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse [J]. Applied |
Physics Letters, 2017, 110(11): 111104. | |
[31] | Fan Yuan G J, Wang C, Wang S, et al. Afterpulse analysis for quantum key distribution [J]. Physical Review Applied, 2018, |
10 | (6): 064032. |
[1] | CHEN Liying , HUANG Kun , WANG Qi , YAN Shinong . Design of an integrated vibration detection module based on diamond NV color centers [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 500-509. |
[2] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[3] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[4] | LI Yan , . Correlation properties of Bose⁃Fermi mixture with one⁃dimensional strong interaction [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 528-540. |
[5] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[6] | SUN Yishi , SUN Yi . Parameter prediction of classical-quantum signals co-fiber transmission system based on BP neural network [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 546-559. |
[7] | QI Zhiming , LIANG Wenyao . Influence of beam polarizations on holographic fabrication of compound photonic crystals [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447-457. |
[8] | JIA Wei , ZHANG Qiangqiang , BIAN Yuxiang , LI Wei . Research on the upper bound of collective attack in E91-QKD [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 407-414. |
[9] | TANG Shibiao ∗ , LI Zhi , ZHENG Weijun , ZHANG Wansheng , GAO Song , LI Yalin , CHENG Jie , JIANG Lianjun . Research on anti-dead time attack scheme for quantum key distribution system [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 95-103. |
[10] | HE Yefeng , , LI Lina ∗ , BAI Qian , CHEN Sihao , QIANG Yuwei . Quantum key distribution of detector’s dead time in heralded single photon source [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 112-119. |
[11] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[12] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[13] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[14] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[15] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||