[1] |
Yuan Guangming, Tang Shunlei, Dong Minghui, et al. Strict monogamy inequality of Tsallis-q entropy entanglement [J].
|
|
Chinese Journal of Quantum Electronics (量子电子学报), 2020, 37(2): 210-214 (in Chinese).
|
[2] |
Koashi M, Winter A. Monogamy of quantum entanglement and other correlations [J]. Physical Review A, 2004, 69: 022309.
|
[3] |
Breuer H P. Optimal entanglement criterion for mixed quantum states [J]. Physical Review Letters, 2006, 97: 080501.
|
[4] |
Julio I de Vicente. Lower bounds on concurrence and separability conditions [J]. Physical Review A, 2007, 75: 052320.
|
[5] |
Coffman V, Kundu J, Wootters W K. Distributed entanglement [J]. Physical Review A, 2000, 61: 052306.
|
[6] |
Osborne T J, Verstraete F. General monogamy inequality for bipartite qubit entanglement [J]. Physical Review Letters, 2006,
|
96 |
: 220503.
|
[7] |
Hiroshima T, Adesso G, Illuminati F. Monogamy inequality for distributed Gaussian entanglement [J]. Physical Review Letters,
|
20 |
07, 98: 050503.
|
[8] |
Dong Y, Horodecki K, Horodecki M, et al. Squashed entanglement for multipartite states and entanglement measures based on
|
|
the mixed convex roof [J]. IEEE Transactions on Information Theory, 2009, 55: 3375.
|
[9] |
He H, Vidal G. Disentangling theorem and monogamy for entanglement negativity [J]. Physical Review A, 2015, 91: 012339.
|
[10] |
Bai Y K, Xu Y F,Wang Z D. General monogamy relation for the entanglement of formation in multiqubit systems [J]. Physical
|
|
Review Letters, 2014, 113: 100503.
|
[11] |
Song W, Bai Y K, Yang M, et al. Generally monogamy of multi-qubit systems in terms of squared R´enyi-α entanglement [J].
|
|
Physical Review A, 2016, 93: 022306.
|
[12] |
Yuan G M, SongW, Yang M, et al. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement [J]. Scientific
|
|
Reports, 2016, 6: 28719.
|
[13] |
Zhu X N, Fei S M. Generalized monogamy relations of concurrence for N-qubit systems [J]. Physical Review A, 2015, 92:
|
06 |
2345.
|
[14] |
Luo Y, Li Y M. Monogamy of α-th power entanglement measurement in qubit system [J]. Annals of Physics, 2015, 362: 511.
|
[15] |
Luo Y, Tian T, Shao L H, et al. General monogamy of Tsallis-q entropy entanglement in multiqubit systems [J]. Physical
|
|
Review A, 2016, 93: 062340.
|
[16] |
Jin Z X, Li J, Li T, et al. Tighter monogamy relations in multipartite systems [J]. Physical Review A, 2018, 97: 032336.
|
[17] |
Zhao Jiaqiang, Cao Lianzhen, Yang Yang, et al. Tripartite entanglement and nonlocality in three-photon generalized GHZ
|
|
states [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2018, 35(5): 583-587 (in Chinese).
|
[18] |
Liang Y Y, Zheng Z J, Zhu C J. Tighter monogamy relations of quantum entanglement for multiqubit W-class states [J].
|
|
Quantum Information Processing, 2017, 16: 53.
|
[19] |
Zhao Jiaqiang, Cao Lianzhen, Yang Yang, et al. Nonlocality and robustness in two-photon entangled system [J]. Chinese
|
|
Journal of Quantum Electronics (量子电子学报), 2018, 35(4): 451-454 (in Chinese).
|
[20] |
Kim J S. Tsallis entropy and entanglement constraints in multiqubit systems [J]. Physical Review A, 2010, 81: 062328.
|
[21] |
Yang L M, Chen B, Fei S M, et al. Polygamy inequalities for qubit systems [J]. International Journal of Theoretical Physics,
|
20 |
19, 58: 2488-2496.
|
[22] |
Yang L M, Chen B, Fei S M, et al. Tighter constraints of multiqubit entanglement [J]. Communications in Theoretical Physics,
|
20 |
19, 71: 545-554.
|