[1] |
Koashi M,Winter A. Monogamy of quantum entanglement and other correlations [J]. Physical Review A, 2004, 69(2): 022309.
|
[2] |
Breuer H P. Optimal entanglement criterion for mixed quantum states [J]. Physical Review Letters, 2006, 97(8): 080501.
|
[3] |
De Vicente J I. Lower bounds on concurrence and separability conditions [J]. Physical Review A, 2007, 75(5): 052320.
|
[4] |
Coffman V, Kundu J, Wootters W K. Distributed entanglement [J]. Physical Review A, 2000, 61(5): 052306.
|
[5] |
Osborne T J, Verstraete F. General monogamy inequality for bipartite qubit entanglement [J]. Physical Review Letters, 2006,
|
96 |
(22): 220503.
|
[6] |
Hiroshima T, Adesso G, Illuminati F. Monogamy inequality for distributed Gaussian entanglement [J]. Physical Review Letters,
|
20 |
07, 98(5): 050503.
|
[7] |
Yang D, Horodecki K, Horodecki M, et al. Squashed entanglement for multipartite states and entanglement measures based on
|
|
the mixed convex roof [J]. IEEE Transactions on Information Theory, 2009, 55(7): 3375-3387.
|
[8] |
He H, Vidal G. Disentangling theorem and monogamy for entanglement negativity [J]. Physical Review A, 2015, 91: 012339.
|
[9] |
Bai Y K, Xu Y F,Wang Z D. General monogamy relation for the entanglement of formation in multiqubit systems [J]. Physical
|
|
Review Letters, 2014, 113(10): 100503.
|
[10] |
SongW, Bai Y K,Yang M, et al. Generally monogamy relation of multiqubit systems in terms of squared R´enyi-α entanglement
|
[J] |
Physical Review A, 2016, 93(2): 022306.
|
[11] |
Yuan G M, SongW, Yang M, et al. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement [J]. Scientific
|
|
Reports, 2016, 6(1): 28719.
|
[12] |
Zhu X N, Fei S M. Generalized monogamy relations of concurrence for N-qubit systems [J]. Physical Review A, 2015, 92(6):
|
06 |
2345.
|
[13] |
Luo Y, Li Y M. Monogamy of α-th power entanglement measurement in qubit systems [J]. Annals of Physics, 2015, 362:
|
51 |
1-520.
|
[14] |
Luo Y, Tian T, Shao L H, et al. General monogamy of Tsallis q-entropy entanglement in multiqubit systems [J]. Physical
|
|
Review A, 2016, 93(6): 062340.
|
[15] |
Jin Z X, Li J, Li T, et al. Tighter monogamy relations in multiqubit systems [J]. Physical Review A, 2018, 97(3): 032336.
|
[16] |
Zhao J Q, Cao L Z, Yang Y, et al. Tripartite entanglement and nonlocality in three-photon generalized GHZ states [J]. Chinese
|
|
Journal of Quantum Electronics, 2018, 35(5): 583-588.
|
|
赵加强, 曹连振, 杨阳, 等. 三光子广义GHZ 态中三体纠缠和非定域性研究[J]. 量子电子学报, 2018, 35(5): 583-588.
|
[17] |
Jin Z X, Fei S M. Tighter monogamy relations of quantum entanglement for multiqubitW-class states [J]. Quantum Information
|
|
Processing, 2018, 17: 1-14.
|
[18] |
Zhao J Q, Cao L Z, Yang Y, et al. Nonlocality and robustness in two-photon entangled system [J]. Chinese Journal of Quantum
|
|
Electronics, 2018, 35(4): 451-454.
|
|
赵加强, 曹连振, 杨阳, 等. 双光子纠缠体系中的非定域性和稳健性[J]. 量子电子学报, 2018, 35(4): 451-454.
|
[19] |
Kim J S. Tsallis entropy and entanglement constraints in multiqubit systems [J]. Physical Review A, 2010, 81(6): 062328.
|
[20] |
Zhu X N, Jin Z X, Fei S M, et al. Polygamy inequalities for qubit systems [J]. International Journal of Theoretical Physics,
|
20 |
19, 58(8): 2488-2496.
|
[21] |
Yang L M, Chen B, Fei S M, et al. Tighter constraints of multiqubit entanglement [J]. Communications in Theoretical Physics,
|
20 |
19, 71(5): 75-84.
|
[22] |
Horodecki R, Horodecki P, Horodecki M. Quantum α-entropy Inequalities:Independent condition for localrealism?[J]. Physics
|
|
Letters A, 1996, 210(6): 377-381.
|