[1] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communication of the ACM, 1978, 21(2): 120-126. [2] Gottesman D, Chuang I. Quantum digital signatures[J]. 2002, arXiv: 0105032v2[quant-ph]. [3] Wootters W K, Zurek W H. A single quantum cannot be cloned[J]. Nature, 1982, 299(5886): 802-803. [4] Busch P, Heinonen T, Lahti P. Heisenberg's uncertainty principle[J]. Physics Reports, 2007, 452(6): 155-176. [5] Andersson E, Curty M, Jex I. Experimentally realizable quantum comparison of coherent states and its applications[J]. Physical Review A, 2006, 74(2): 022304. [6] Clarke P J, Collins R J, Dunjko V, Andersson E, Jeffers J, Buller G S. Experiment demonstration of quantum digital signatures using phase-encoded coherent state of light[J]. Nature Communications, 2012, 111(3): 1174. [7] Collins R J, Donaldson R J, Dunjko V, Wallden P, Clarke P J, Andersson E, Buller G S. Realization of quantum digital signatures without the requirement of quantum memory[J]. Physical Review Letters, 2014, 113(4): 040502. [8] Donaldson R J, Collins R J, Kleczkowska K, Amiri R, Wallden P, Dunjko V, Buller G S. Experiment demonstration of kilometer-range quantum digital signatures[J]. Physical Review A, 2016, 93(1): 012329. [9] Amiri R, Wallden P, Kent A, Andersson E. Secure quantum signatures using insecure quantum channels[J]. Physical Review A, 2016, 93(3): 032325. [10] Yin H L, Fu Y, Chen Z B. Practical quantum digital signature[J]. Physical Review A, 2016, 93(3): 032316. [11] Roberts G L, Lucamarini M, Yuan Z L, Dynes J F, Comandar L C, Sharpe A W, Andersson E. Experimental measurement-device-independent quantum digital signatures[J]. 2017, Nature communications, 8(1): 1-7. [12] Chen J M. Theoretical research on quantum digital signature[D]. Nanjing: Nanjing University of Posts and Telecommunications,2019. [陈家明,2019,量子数字签名的理论研究,硕士学位论文(南京:南京邮电大学)] [13] Zhang C, Zhou X, Ding H, et al. Proof-of-Principle Demonstration of Passive Decoy-State Quantum Digital Signatures Over 200 km[J]. Physical Review Applied, 2018, 10(3). [14] An X-B, Zhang H, Zhang C M, et al. Practical quantum digital signature with a gigahertz BB84 quantum key distribution system[J]. Optics Letters, 2019, 44(1): 139-142. [15] Ding H, Chen J, Ji L, et al. 280-km experimental demonstration of a quantum digital signature with one decoy state[J]. Optics Letters, 2020, 45(7): 1711-1714. [16] Hwang W Y. Quantum key distribution with high loss: toward global secure communication[J]. Physical Review Letters, 91(5): 057901. [17] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J].Physical Review Letters, 2005, 94(23): 230503. [18] Lo H K, Ma X, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 2005, 94(23):230504. [19] Curty M, Moroder T, Ma X, Lütkenhaus N. Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution[J]. Optics letters, 2009, 34(20): 3238-3240. [20] Curty M, Ma X, Qi B. Passive decoy-state quantum key distribution with practical light sources[J]. Physical Review A, 2010, 81(2): 022310. [21] Lim C C, Curty M, Walenta N, Xu F, Zbinden H. Concise security bounds for practical decoy-state quantum key distribution[J]. 2014, Physical Review A, 89(2): 022307. [22] Zhang C H, Luo S L, Guo G C, Wang Q. Approaching the ideal quantum key distribution with two-intensity decoy states[J]. 2015, Physical Review A, 92(2), 022332. [23] Serfling R J. Probability inequalities for the sum in sampling without replacement[J]. 1974, The Annals of Statistics, 2: 39-48. [24] Zhang W J, You L X, Li H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(12): 120314.
|