| [1] HARRIS S E. Electromagnetically Induced Transparency [J]. Physics Today, 1997, 50(7): 36-42.[2] ZHENG S Q, MA M S, LV Y, et al. Dual-band electromagnetically induced transparent metamaterial with slow light effect and energy storage [J]. J Phys D-Appl Phys, 2022, 55(25): 8.[3] CHEN M M, XIAO Z Y. Metal-graphene hybrid terahertz metamaterial based on dynamically switchable electromagnetically induced transparency effect and its sensing performance [J]. Diam Relat Mat, 2022, 124: 12.[4] XIANG X C, MA H B, WANG L, et al. Ultramicro-sensing of terahertz metamaterials implemented by using sample traps [J]. Acta Phys Sin, 2023, 72(12): 9.[5] ZHANG J, MU N, LIU L H, et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency [J]. Biosens Bioelectron, 2021, 185: 7.[6] PAPASIMAKIS N, FEDOTOV V A, ZHELUDEV N I, et al. Metamaterial analog of electromagnetically induced transparency [J]. Phys Rev Lett, 2008, 101(25): 253903.[7] LIU N, LANGGUTH L, WEISS T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit [J]. Nat Mater, 2009, 8(9): 758-62.[8] KAINA N, LEMOULT F, FINK M, et al. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials [J]. Nature, 2015, 525(7567): 77-81.[9] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-9.[10] CHEN J, WANG Y, JIA B, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies [J]. Nature Photonics, 2011, 5(4): 239-42.[11] ZHAI S L, ZHAO X P, LIU S, et al. Inverse Doppler Effects in Broadband Acoustic Metamaterials [J]. Sci Rep, 2016, 6: 32388.[12] REENA R, KALRA Y, KUMAR A. Electromagnetically induced transparency-based metal dielectric metamaterial and its terahertz sensing application [J]. Appl Optics, 2021, 60(34): 10610-6.[13] MASHAYEKHI M Z, ABBASIAN K, NURMOHAMMADI T. Dual-wavelength active and tunable modulation at telecommunication wavelengths using graphene-metal hybrid metamaterial based on plasmon induced transparency [J]. Phys Scr, 2022, 97(9): 11.[14] CAO P F, LI Y, DENG Y B, et al. Constant frequency reconfigurable terahertz metasurface based on tunable electromagnetically induced transparency-like approach [J]. Nanotechnology, 2022, 33(40): 9.[15] LI C, TENG Y, XIAO Y H, et al. Tunable terahertz electromagnetically induced transparency based on a composite structure metamaterial [J]. Appl Optics, 2022, 61(32): 9398-404.[16] ISLAM M, DHRITI K M, SARKAR R, et al. Tunable control of electromagnetically induced transparency effect in a double slot terahertz waveguide [J]. Optics Communications, 2021, 483: 6.[17] GAO C J, SUN Y Z, DONG H Q, et al. Achieving polarization control by utilizing electromagnetically induced transparency based on metasurface [J]. Waves Random Complex Media, 2022: 23.[18] XU K D, XIA S P, CAI Y J, et al. Graphene-based tunable terahertz electromagnetically induced transparency using metamaterial structure [J]. Microw Opt Technol Lett, 2022, 64(11): 1917-22.[19] PAN W, YAN Y, MA Y, et al. A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance [J]. Optics Communications, 2019, 431: 115-9.[20] HU S, LIU D, YANG H, et al. Staggered H-shaped metamaterial based on electromagnetically induced transparency effect and its refractive index sensing performance [J]. Optics Communications, 2019, 450: 202-7.[21] SUN R, LI W, MENG T, et al. Design and optimization of terahertz metamaterial sensor with high sensing performance [J]. Optics Communications, 2021, 494.[22] LIN T, HUANG Y, ZHONG S, et al. Field manipulation of electromagnetically induced transparency analogue in terahertz metamaterials for enhancing liquid sensing [J]. Optics and Lasers in Engineering, 2022, 157.[23] GE H-Y, LI L, JIANG Y-Y, et al. Double-opening metal ring based terahertz metamaterial absorber sensor [J]. Acta Phys Sin, 2022, 71(10).[24] ISLAM M S, SULTANA J, BIABANIFARD M, et al. Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing [J]. Carbon, 2020, 158: 559-67.[25] PRODAN E, RADLOFF C, HALAS N J, et al. A hybridization model for the plasmon response of complex nanostructures [J]. Science (New York, NY), 2003, 302(5644): 419-22.[26] NGUYEN T H Y, JEONG H Y, JUN Y C, et al. Geometry-Independent Excitation of Dark Modes Using Dipole Moment Transitions [J]. IEEE Trans Antennas Propag, 2020, 68(8): 6172-82.[27] CHEN M M, XIAO Z Y, LU X J, et al. Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial [J]. Carbon, 2020, 159: 273-82.[28] YAN R Q, WANG T, YUE X Z, et al. Highly sensitive plasmonic nanorod hyperbolic metamaterial biosensor [J]. Photonics Res, 2022, 10(1): 84-95.[29] NICKPAY M R, DANAIE M, SHAHZADI A. Design of a graphene-based multi-band metamaterial perfect absorber in THz frequency region for refractive index sensing [J]. Physica E, 2022, 138: 8.[30] YAO H Z, MEI H Y, ZHANG W W, et al. Theoretical and Experimental Research on Terahertz Metamaterial Sensor With Flexible Substrate [J]. IEEE Photonics J, 2022, 14(1): 9.[31] ZHANG C, XUE T, ZHANG J, et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells [J]. Nanophotonics, 2021, 11(1): 101-9.[32] MENG K, PARK S J, BURNETT A D, et al. Increasing the sensitivity of terahertz split ring resonator metamaterials for dielectric sensing by localized substrate etching [J]. Opt Express, 2019, 27(16): 23164-72.[33] WU X, QUAN B, PAN X, et al. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor [J]. Biosens Bioelectron, 2013, 42: 626-31.[34] QU F, LIN L, HE Y, et al. Spectral Characterization and Molecular Dynamics Simulation of Pesticides Based on Terahertz Time-Domain Spectra Analyses and Density Functional Theory (DFT) Calculations [J]. Molecules, 2018, 23(7).[35] SUN Z S, WANG X, WANG J L, et al. Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like [J]. Acta Phys Sin, 2022, 71(13): 9. |