Chinese Journal of Quantum Electronics ›› 2024, Vol. 41 ›› Issue (2): 185-193.doi: 10.3969/j.issn.1007-5461.2024.02.001
• Review • Next Articles
Tailoring single-photon emission with metallic nano-structures
Received:
2023-09-01
Revised:
2023-11-07
Published:
2024-03-28
Online:
2024-03-28
CLC Number:
Tailoring single-photon emission with metallic nano-structures. Tailoring single-photon emission with metallic nano-structures[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 185-193.
[1]Reimer M E, Cher C.The quest for a perfect single-photon source[J].Nature Photonics, 2019, 13(11):734-736 [2]Oxborrow M, Sinclair A G.Single-photon sources[J].Contemporary Physics, 2005, 46(3):173-206 [3]Northup T E, Blatt R.Quantum information transfer using photons[J].Nature Photonics, 2014, 8(5):356-363 [4]Lodahl P, Mahmoodian S, Stobbe S.Interfacing single photons and single quantum dots with photonic nanostructures[J].Reviews of Modern Physics, 2015, 87(2):347-400 [5]Aharonovich I, Englund D, Toth M.Solid-state single-photon emitters[J].Nature Photonics, 2016, 10(10):631-641 [6]Senellart P, Solomon G, White A.High-performance semiconductor quantum-dot single-photon sources[J].Nature Nanotechnology, 2017, 12(11):1026-1039 [7]Qiang X, Zhou X, Wang J, et al.Large-scale silicon quantum photonics implementing arbitrary two-qubit processing[J].Nature Photonics, 2018, 12(9):534-539 [8]Luo Y, Ahmadi E D, Shayan K, et al.Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities[J].Nature Communications, 2017, 8(1):1413-1413 [9]Kan Y, Bozhevolnyi S I.Advances in Metaphotonics Empowered Single Photon Emission[J].Advanced Optical Materials, 2023, 11(10):2202759-2202759 [10]Morozov S, Gaio M, Maier S A, et al.Metal-Dielectric Parabolic Antenna for Directing Single Photons[J].Nano Letters, 2018, 18(5):3060-3065 [11]Curto A, Volpe G, Taminiau T, et al.Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna[J].Science, 2010, 329(5994):930-933 [12]Andersen S K H, Bogdanov S, Makarova O, et al.Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection[J].ACS Photonics, 2018, 5(3):692-698 [13]Kan Y, Ding F, Zhao C, et al.Directional off-Normal Photon Streaming from Hybrid Plasmon-Emitter Coupled Metasurfaces[J].ACS Photonics, 2020, 7(5):1111-1116 [14]Andersen S K H, Kumar S, Bozhevolnyi S I.Ultrabright Linearly Polarized Photon Generation from a Nitrogen Vacancy Center in a Nanocube Dimer Antenna[J].Nano Letters, 2017, 17(6):3889-3895 [15]Kan Y, Andersen S K H, Ding F, et al.Metasurface-Enabled Generation of Circularly Polarized Single Photons[J].Advanced Materials, 2020, 32(16):1907832-1907832 [16]Zhang G, Gu Y, Gong Q, et al.Symmetry-tailored patterns and polarizations of single-photon emission[J].Nanophotonics, 2020, 9(11):3557-3565 [17]Xue Z, Jia S, Li X, et al.Scalar‐Superposition Metasurfaces with Robust Placement of Quantum Emitters for Tailoring Single‐Photon Emission Polarization[J].Laser & Photonics Reviews, 2022, 16(9):2200179-2200179 [18]Jia S, Li Y, Xue Z, et al.Multichannel Single-Photon Emissions with on-Demand Momentums by Using Anisotropic Quantum Metasurfaces[J].Advanced Materials, 2023, 35(26):2212244-2212244 [19]Bao Y, Lin Q, Su R, et al.On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface[J].Science Advances, 2020, 6(31):e-a [20]Akselrod G M, Argyropoulos C, Hoang T B, et al.Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J].Nature Photonics, 2014, 8(11):835-840 [21]Werschler F, Lindner B, Hinz C, et al.Efficient Emission Enhancement of Single CdSeCdSPMMA Quantum Dots through Controlled Near-Field Coupling to Plasmonic Bullseye Resonators[J].Nano Letters, 2018, 18(9):5396-5400 [22]Shafi K M, Yalla R, Nayak K P.Bright and Polarized Fiber In-Line Single-Photon Source Based on Plasmon-Enhanced Emission into Nanofiber Guided Modes[J].Physical Review Applied, 2023, 19(3):034008-034008 [23]Pelton M.Modified spontaneous emission in nanophotonic structures[J].Nature Photonics, 2015, 9(7):427-435 [24]Choi H, Zhu D, Yoon Y, et al.Cascaded Cavities Boost the Indistinguishability of Imperfect Quantum Emitters[J].Physical Review Letters, 2019, 122(18):183602-183602 [25]Saxena A, Chen Y, Ryou A, et al.Improving Indistinguishability of Single Photons from Colloidal Quantum Dots Using Nanocavities[J].ACS Photonics, 2019, 6(12):3166-3173 [26]Bermudez-Urena E, Gonzalez-Ballestero C, Geiselmann M, et al.Coupling of individual quantum emitters to channel plasmons [J]. Nature Communications, 2015, 6: 7883. [27]Zhang G, Jia S, Gu Y, et al.Brightening and Guiding Single‐Photon Emission by Plasmonic Waveguide–Slit Structures on a Metallic Substrate[J].Laser & Photonics Reviews, 2019, 13(10):1900025- [28]Bozhevolnyi S I, Khurgin J B.Fundamental limitations in spontaneous emission rate of single-photon sources[J].Optica, 2016, 3(12):1418-1421 [29]Chen J, Gan F, Wang Y, et al.Plasmonic Sensing and Modulation Based on Fano Resonances[J].Advanced Optical Materials, 2018, 6(9):1701152- [30]Gramotnev D K, Bozhevolnyi S I.Plasmonics beyond the diffraction limit[J].Nature Photonics, 2010, 4(2):83-91 [31]Zhang Y, Wang H, Liao H, et al.Unidirectional launching of surface plasmons at the subwavelength scale[J].Applied Physics Letters, 2014, 105(23):231605- [32]Xia S, Aoki T, Gao K, et al.Enhanced Single-Photon Emission from GaN Quantum Dots in Bullseye Structures[J].ACS Photonics, 2021, 8(6):1656-1661 [33]Liu J, Su R, Wei Y, et al.A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J].Nature Nanotechnology, 2019, 14(6):586-593 [34]Wang H, He Y-M, Chung T H, et al.Towards optimal single-photon sources from polarized microcavities[J].Nature Photonics, 2019, 13(11):770-775 [35]Jiang Q, Roy P, Claude J-B, et al.Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot[J].Nano Letters, 2021, 21(16):7030-7036 [36]Lian H, Gu Y, Ren J, et al.Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons[J].Physical Review Letters, 2015, 114(19):192301- [37]Abudayyeh H, Mildner A, Liran D, et al.Overcoming the Rate-Directionality Trade-off: A Room-Temperature Ultrabright Quantum Light Source[J].ACS Nano, 2021, 15(11):17384-17391 [38]Hoang T B, Akselrod G M, Mikkelsen M H.Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities[J].Nano Letters, 2016, 16(1):270-275 [39]Bogdanov S I, Shalaginov M Y, Lagutchev A S, et al.Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas[J].Nano Letters, 2018, 18(8):4837-4844 [40]Kosako T, Kadoya Y, Hofmann H F.Directional control of light by a nano-optical Yagi-Uda antenna[J].Nature Photonics, 2010, 4(5):312-315 [41]Livneh N, Harats M G, Istrati D, et al.Highly Directional Room-Temperature Single Photon Device[J].Nano Letters, 2016, 16(4):2527-2532 [42]Davanco M, Rakher M T, Schuh D, et al.A circular dielectric grating for vertical extraction of single quantum dot emission[J].Applied Physics Letters, 2011, 99(4):041102- [43]Li L, Chen E H, Zheng J, et al.Efficient Photon Collection from a Nitrogen Vacancy Center in a Circular Bullseye Grating[J].Nano Letters, 2015, 15(3):1493-1497 [44]Belacel C, Habert B, Bigourdan F, et al.Controlling Spontaneous Emission with Plasmonic Optical Patch Antennas[J].Nano Letters, 2013, 13(4):1516-1521 [45]Huang T-Y, Grote R R, Mann S A, et al.A monolithic immersion metalens for imaging solid-state quantum emitters [J]. Nature Communications, 2019, 10: 2392. [46]Xie Y-Y, Ni P-N, Wang Q-H, et al.Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions[J].Nature Nanotechnology, 2020, 15(2):125-130 [47]Kan Y, Bozhevolnyi S I.Molding Photon Emission with Hybrid Plasmon-Emitter Coupled Metasurfaces[J].Advanced Optical Materials, 2022, 10(12):2102697- [48]Wang Y, Li S, Yan J-Y, et al.Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas[J].Nanophotonics, 2019, 8(7):1271-1278 [49]Puchtler T J, Wang T, Ren C X, et al.Ultrafast,Polarized,Single-Photon Emission from m-Plane InGaN Quantum Dots on GaN Nanowires[J].Nano Letters, 2016, 16(12):7779-7785 [50]Komisar D, Kumar S, Kan Y, et al.Generation of Radially Polarized Single Photons with Plasmonic Bullseye Antennas[J].ACS Photonics, 2021, 8(8):2190-2196 [51]Hu H, Chen W, Han X, et al.Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission[J].Nanoscale, 2022, 14(6):2287-2295 |
[1] | WANG Xi , YANG Shuangliang , LENG Siyun , HUANG Wentao , ZHOU Yuan . Nonreciprocal phonon⁃photon quantum interface mediated by mechanical resonator [J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 310-317. |
[2] | CHENG Dengxiang , , , YANG Zhen , , , XIE Jiaxin , , , BAI Mingqiang , , , MO Zhiwen , , . Simultaneous dense coding protocol for N receivers [J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 340-348. |
[3] | ZHU Pengjie , CHEN Huajun . All⁃optical mass sensing based on hybrid nanomechanical oscillator system [J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 349-356. |
[4] | Gerile , Sachuerfu , Gegentuya , GONG Yanli . Fidelity of quantum states in a system of atomic Bose⁃Einstein condensate interacting with light field [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 95-102. |
[5] | LI Xiang , ZHANG Kejia , . A semi⁃quantum mutual identity authentication protocol based on GHZ state [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 135-142. |
[6] | YANG Donghan , LI Zhiqiang , WU Xi , PAN Wenjie , YANG Hui. Optimization of Oracle circuits based on minimum weight and template matching [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 151-160. |
[7] | CHEN Bin# , CHEN Tianhao# , ZHANG Rong . Continuous regulation from quantum walk to classical walk [J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 917-923. |
[8] | ZENG Miaona , YANG Ming , . Deterministic remote photonic state swapping via quantum walk [J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 924-932. |
[9] | ZHU Mengzheng , SU Mengyuan, GONG Pifeng, ZHANG Jinfeng . Deterministic entanglement purification for decohered GHZ state assisted by spatial entanglement [J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 943-951. |
[10] | NUERBIYE Aizezi , YAN Haokui , XIANG Mei , BUMALIYA Abulimiti , AN Huan . Dissociation properties and spectra of dibromochloromethane under external electric field [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 644-653. |
[11] | ZHANG Baolin , MA Zixiao , HUANG Yao , GUAN Hua , GAO Kelin , . Research on relationship between locking parameters and stability of optical clocks [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 694-699. |
[12] | HU Qianqian , FENG Bao , YAN Longchuan , ZHAO Xiaohong , CHEN Zhiyu , LI Wenting , LI Wei . HU Qianqian 1,2, FENG Bao 1,2, YAN Longchuan 3, ZHAO Xiaohong 4, CHEN Zhiyu 3, LI Wenting 5, LI Wei 5* [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 712-718. |
[13] | ZHANG Bo , QU Diqing , LUO Jun , DU Xiangjian , FANG Yuqiang , JIANG Lianjun , GAO Song , YU Lin , SUN Fang , TANG Shibiao . A defense scheme of pulse illumination attack for quantum key distribution systems [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 719-725. |
[14] | HUANG Guan , LOU Xiaoping. Semi⁃quantum private comparison protocol based on four⁃particle GHZ state [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 726-737. |
[15] | JI Wen , YE Bin , . A general quantum circuit design method for HHL quantum algorithm [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 747-758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||