[1] Cong S, Lou Y. Decoherence and control strategies in open quantum systems [J]. Chinese Journal of Quantum Electronics, 2008, 25(6): 665-669. (in Chinese)
[2] Zhang Y. Principles of quantum information physics [M]. Beijing: Science Press,2006. 130-131. (in Chinese)
[3] Stefanescu E, Scheid W, and Sandulescu A. Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field [J]. Annals of Physics, 2008, 323(5): 1168-1190.
[4] Weiss U. Quantum dissipative systems [M], 3rd ed. Singapore: World Scientific, 2008: 101-105.
[5] Gambetta J M. Non-Markovian stochastic Schr?dinger equations and interpretations of quantum mechanics [D]. Queensland: Griffith University, 2003.
[6] Redfield A G. On the theory of relaxation processes [J]. IBM J Res Dev, 1957, 1: 19-31.
[7] Lindblad G. On the generators of quantum dynamical semigroups [J]. Commun Math Phys, 1976, 48: 119-130
[8] Gaspard P, Nagaoka M. Slippage of initial conditions for the Redfield master equation [J]. J Chem Phys, 1999, 111: 5668-5675.
[9] Strunz W T. The Brownian motion stochastic Schr?dinger equation [J]. Chem Phys, 2001, 268: 237-248.
[10] Esposito M, Gaspard P. Quantum master equation for a system influencing its environment [J]. Phys Rev E, 2003, 68(6): 066112.
[11] Kraus K. States, effects and operations: fundamental notions of quantum theory [M]. Berlin: Springer-Verlag, 1983.151-167.
[12] Melikidze A. Quantum mechanics of open systems [D]. Princeton: Princeton University, 2001.
[13] Gorini V, Kossakowski A, Sudarshan E C G. Completely positive dynamical semigroups of N-level systems [J]. J Math Phys, 1976, 17: 821-825.
[14] Dacies E B. Markovian master equations ii. [J]. Mathematical Annals, 1976, 219: 147-158.
[15] Gutmann H P G. Description and control of decoherence in quantum bit systems [D]. Munchen: Ludwig-Maximilians University, 2005.
[16] Daffer S L. Markovian and non-Markovian state evolution in open quantum systems [D]. Albuquerque. New Mexico: University of New Mexico, 1999.
[17] Luczka J. On Markovian kinetic equations: Zubarev's nonequilibrium statistical operator approach [J]. Physica A, 1989, 149: 245-266.
[18] Celio M, Loss D. Comparison between different markov approximations for open spin systems [J]. Physica A, 1989, 158: 769-783.
[19] Scully M O, Zubairy MS. Quantum optics [M]. Cambridge, England: Cambridge University Press, 1997. 255-256.
[20] Michael R G. Models for local Ohmic quantum dissipation [J]. Phys. Rev. A. 1993, 48(2): 1028-1034.
[21] Oreshkov O. Topics in quantum information and the theory of open quantum systems [D]. Los Angeles: University of Southern California, 2008.
[22] Shabani A, Lidar D A. Completely positive post-markovian master equation via a measurement approach [J]. Phys. Rev. A., 2005, 71(2), 020101.
[23] Cohen D, Kottos T. Quantum dissipation due to the interaction with chaotic degrees of freedom and the correspondence principle [J]. Phys. Rev. Lett., 1999, 82: 4951-4955.
[24] Marcus R A. Ion pairing and electron transfer [J]. Adv. Chem. Phys., 1997, 101: 391-408.
[25] Deng Y, Stratt R M. Vibrational energy relaxation of polyatomic molecules in liquids: the solvent’s perspective [J], J. Chem. Phys., 2002, 117: 1735-1749. |