J4 ›› 2014, Vol. 31 ›› Issue (4): 449-458.
Previous Articles Next Articles
Wang Jindong,Zhang Zhiming
Published:
2014-07-28
Online:
2014-07-30
CLC Number:
Wang Jindong,Zhang Zhiming. Unconditional security of quantum key distribution based on practical devices [J]. J4, 2014, 31(4): 449-458.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Douglas R. Stinson. Cryptography: Theory and Practice[M]. Third Edition, CRC Press, CRC Press LLC. 2006. [2] Shannon, C.E. Communication theory of secrecy systems[J]. Bell Tech. J., 1949, 28: 656-715. [3] Wootters, W.K. and W.H. Zurek. A single quantum cannot be cloned[J]. Nature, 1982, 299: 802-803. [4] Wiesner, S. Conjugate coding[J]. ACM SIGACT News, 1983,15: 78-88. [5] Bennett, C.H., F. Bessette, G. Brassard, L. Salvail and J. Smolin. Experimental quantum cryptography[J]. J. Cryptol., 1992, 5: 3-28. [6] Ekert, A.K. Quantum cryptography based on Bell's theorem[J]. Phys. Rev. Lett., 1991, 67: 661-663. [7] Bennett, C.H., G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. Wootters. Teleporting an unknown quantum state via dual classical and EPR channels[J]. Phys. Rev. Lett., 1993, 70: 1895-1899. [8] Bennett, C.H., G. Brassard and J.M. Robert. Privacy amplification by public discussion[J]. SIAM J. Comput., 1988,17: 210-229. [9] Bennett, C.H., G. Brassard, C. Crkpeau and U.M. Maurer. Generalized privacy amplification[J]. IEEE Trans. Inform. Theory, 1995, 41: 1915-1923. [10] Maurer, U.M. and S. Wolf. Privacy amplification secure against active[J]. Adv. Cryptol. CRYPTO'91, 1996, 1294: 307-321. [11]G. Van Assche, S. lblisdir, and N. J. Cerf. Secure coherent-state quantum key distribution protocols with efficient reconciliation[J]. Physical Review A 2005, 71, 052304. [12] Lo HK, Chau HF. Unconditional security of quantum key distribution over arbitrarily long distances[J]. Science. 1999, 283(5410):2050-6. [13] MAYERS, D. Quantum key distribution and string oblivious transfer in noisy channels[C]. Advances in Cryptology—Proceedings of Crypto ’96 (Aug.). Springer-Verlag, New York, 1996. pp. 343–357. [14] MAYERS, D., AND SALVAIL, L. Quantum oblivious transfer is secure against all individual measurements[C]. Proceedings of the Workshop on Physics and Computation, PhysComp’94, (Dallas, Tex., Nov.). 1994, pp. 69 –77. [15] MAYERS, D. On the security of the quantum oblivious transfer and key distribution protocols[C]. Advances in Cryptology—Proceedings of Crypto ’95 (Aug.). Springer-Verlag, New York, 1995, pp. 124 –135. [16] DEUTSCH, D., EKERT, A. K., JOZSA, R., MACCHIAVELLO, C., POPESCU, S., AND SANPERA, A. Quantum privacy amplification and the security of quantum cryptography over noisy channels[J]. Phys. Rev. Lett. 1996, 77:2818 –2821. [17] BIHAM, E., AND MOR, T. On the security of quantum cryptography against collective attacks[J]. Phys. Rev. Lett. 1996, 78: 2256 –2259. [18] BIHAM, E., BOYER, M., BRASSARD, G., VAN DE GRAAF, J., AND MOR, T. Security of quantum key distribution against all collective attacks[EB/OL]. LANL archives 1998, quant-ph/9801022. [19] MAYERS, D. Unconditional Security in Quantum Cryptography[J]. Journal of the ACM, 2001, 48(3):351-406. [20]Shor, P.W. and J. Preskill. Simple proof of security of the BB84 quantum key distribution protocol[J]. Phys. Rev. Lett., 2000, 2: 441-444. [21]Quan, Z., T. Chao-Jing and Z. Sen-Qiang. Modification of B92 protocol and the proof of its unconditional security[J]. Acta Physica Sinica, 2002, 51: 1447. [22] Tamaki, K., M. Koashi and N. Imoto. Unconditionally secure key distribution based on two nonorthogonal states[J]. Phys. Rev. Lett., 2003, 90: 167904. [23]Masato Koashi and John Preskill. Secure Quantum Key Distribution with an Uncharacterized Source[J]. Phys. Rev. Lett., 2003, 90(5): 057902. [24] Koashi, M. Simple security proof of quantum key distribution based on complementarity[J]. New J. Phys., 2009, 11: 045018-045018. [25] Koashi M. Efficient quantum key distribution with practical sources and detectors[EB/OL]. 2006, arXiv:quantph/0609180. [26] Kai Wen; Kiyoshi Tamaki; Yoshihisa Yamamoto. Unconditional security of single-photon differential phase shift quantum key distribution[J]. Phys. Rev. Lett., 2009, 103: 0401141. [27] Yi-Bo Zhao, Chi-Hang Fred Fung, Zheng-Fu Han, and Guang-Can Guo. Security proof of differential phase shift quantum key distribution in the noiseless case[J]. Phys. Rev. A., 2008,78:042330. [28]D. Gottesman, H.-K. Lo, Norbert Lukenhaus, and John Preskill. Security of Quantum Key Distribution with Imperfect Devices[J]. Quantum Inf. Comput, 2004, 4:325. [29]W.-Y. Hwang. Quantum key distribution with high loss: toward global secure communication[J], Phys. Rev. Lett. 2003, 91:057901. [30] Lo H.K, Ma X, Chen. K. Decoy State Quantum Key Distribution [J]. Phys.Rev.Lett. 2005, 94: 230504. [31] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Phys. Rev. Lett. 2005, 94:230503. [32] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian. Experimental Quantum Key Distribution with Decoy States[J]. Phys. Rev. Lett. 2006, 96: 070502. [33] D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J.E. Nordholt. Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber[J]. Phys. Rev. Lett. 2007, 98: 010503. [34]H, Inamori, N. Lütkenhaus, and D. Mayers. Unconditional security of pratical quantum key distribution[J]. Eur. Phys. J. D 2007, 41: 599-627. [35] B. Huttner, N.Imoto, N. Gisin and T. Mor. Quantum cryptography with coherent states[J]. Phys. Rev. A, 1995, 51: 1863-1869. [36] W. Y. Hwang, X. B. Wang, K. Matsumoto, J. Kim and H. W. Lee. Shor-Preskill-type security proof for quantum key distribution without public announcement of bases[J]. Phys. Rev. A, 2003, 67: 012302. [37] K. Wen and G. L. Long. Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications[J]. Phys. Rev. A, 2005, 72: 022336. [38] Wang X.B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light [J]. Phys. Rev.A, 2005, 72:12322. [39] Yi Zhao, Bing Qi, and Hoi-Kwong Lo. Quantum key distribution with an unknown and untrusted source[J]. Phys. Rev. A, 2008, 77:052327. [40] Xiang Peng, Hao Jiang, Bingjie Xu, Xiongfeng Ma,and Hong Guo. Experimental quantum key distribution with an untrusted source [J]. Optics Letters, 2008, 33(18): 2077-2079. [41] A.Vakhitov, V.Makarov and D.Hjelme. Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography [J]. Journal of Modern Optics, 2001, 48(13): 2023-2038. [42] G. Ribordy, J.-D. Gautier, N. Gisin, et al. Fast and user-friendly quantum key distribution [J]. Journal of Modern Optics, 2000, 47:517-531. [43] Chi-Hang, Fred Fung, Bing Qi, Kiyoshi Tamaki and Hoi-Kwong Lo. Phase-remapping attack in practical quantum-key-distribution systems[J]. Phys. Rev. A, 2007, 75:032314. [44] Feihu Xu, Bing Qi and Hoi-Kwong.Lo. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system[J]. New Journal of Physics,2010, 12:113026. [45] V. Makarov and Dag.R.Hjelme. Faked states attack on quantum cryptosystems[J]. Journal of Modern Optics, 2005, 52(5): 691-705. [46] V. Makarov. A. Anisimov and J.Skaar. Effects of detector efficiency mismatch on security of quantum cryptosystems[J]. Phys. Rev. A, 2006, 74: 022313. [47] Bing Qi, Chi-Hang, Fred Fung, Hoi-Kwong Lo, Xiongfeng Ma. Time-shift attack in practical quantum cryptosystems[J]. Quantum Information&Computation2007, 7: 73-82. [48] Nitin Jain, Christoffer Wittmann, Lars Lydersen, et al. Device Calibration Impacts Security of Quantum Key Distribution[J]. Phys.Rev.Lett, 2011, 107: 110501. [49] Lars Lydersen, Carlos Wiechers, Christoffer Wittmann et al. Hacking commercial quantum cryptography systems by tailored bright illumination[J]. Nature Photonics, 2000, 4: 686-689. [50] Vadim Makarov. Controlling passively quenched single photon detectors by bright light[J]. New J. Phys, 2009, 11:065003. [51]H. Kwong Lo, M. Curty, and Bing Q. Measurement device independent quantum key distribution[J]. Phys. Rev. Lett, 2012, 108: 1305031. [52]D. Mayers and A. C. C. Yao. Quantum Cryptography with Imperfect Apparatus[C]. in proceeding of the 39th Annual symposium on Foundations of Computer Science (FOCS98), (IEEE Computer Society, Washington, DC, 1998), 1998, 503. [53]A. Acin et al. Device-Independent Security of Quantum Cryptography Against Collective Attacks[J]. Phys. Rev. Lett. 2007, 98: 230501. [54] K. Tamaki, H.-K. Lo, C.-H. F. Fung, and B. Qi, Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Phys. Rev. A, 2012, 85:042307. [55] X. Ma and M. Razavi. Alternative schemes for measurement-device-independent quantum key distribution[J]. Phys. Rev. A, 2012, 86: 062319. [56] X. Ma, Chi-Hang Fred Fung, Mohsen Razavi. Statistical fluctuation analysis for measurement-device-independent quantum key distribution[J]. Phys. Rev. A,2012, 86:052305. [57] Y. Liu, T.-Y. Chen, L.-J.Wang, H. Liang, G.-L. Shentu, J.Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan. Experimental Measurement-Device-Independent Quantum Key Distribution[J]. Phys. Rev. Lett. 2013, 111:130502. [58] Zhiyuan Tang, Zhongfa Liao, Feihu Xu, B. Qi, Li Qian and H.-K. Lo. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution[EB/OL]. 2013, arXiv:1306. 6134. [59] T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Tempor?o, J. P. von der Weid. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits[J]. Phys. Rev. A, 2013, 88: 052303. |
[1] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[2] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[3] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[4] | JIA Wei , ZHANG Qiangqiang , BIAN Yuxiang , LI Wei . Research on the upper bound of collective attack in E91-QKD [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 407-414. |
[5] | CAO Rui , YUAN Chengzhi , SHEN Si , ZHANG Zichang , FAN Yunru , LI Jiarui , LI Hao , YOU Lixing , ZHOU Qiang , WANG Zizhu ∗. Optimized detection of maximally entangled time-bin qutrits [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 85-94. |
[6] | TANG Shibiao ∗ , LI Zhi , ZHENG Weijun , ZHANG Wansheng , GAO Song , LI Yalin , CHENG Jie , JIANG Lianjun . Research on anti-dead time attack scheme for quantum key distribution system [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 95-103. |
[7] | RUAN Zhiqiang, ZHANG Lei, ZHAO Xinyu, JIANG Xingfang ∗. Analysis of negative dispersion characteristics of a novel circular doped photonic crystal fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 133-138. |
[8] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[9] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[10] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[11] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[12] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[13] | ZHAO Liangyuan , ∗ , CAO Lingyun , LIANG Hongyuan , WEI Zheng , WU Qianjun , QIAN Jianlin , HAN Zhengfu ∗. Research on wavelength-multiplexed quantum key distribution based on different optical fibers [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 776-785. |
[14] | ZHANG Rui , MEI Dajiang , ∗ , SHI Xiaotu , , MA Rongguo , , ZHANG Qingli , ∗ , DOU Renqin , , LIU Wenpeng , . Research progress of dislocation of YAG crystal [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 687-706. |
[15] | WANG Jingjing, LIU Yujie, ZHENG Li∗. Quantum properties of macroscopic quantum state prepared by ultra-strong coupling cavity opto-mechanical system [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 598-604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||