Chinese Journal of Quantum Electronics ›› 2023, Vol. 40 ›› Issue (2): 164-180.doi: 10.3969/j.issn.1007-5461.2023.02.002
Previous Articles Next Articles
XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang ∗
Received:
2022-09-29
Revised:
2022-10-21
Published:
2023-03-28
Online:
2023-03-28
CLC Number:
XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang ∗. Characteristics of terahertz wave generated from liquids[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 164-180.
[1]Jepsen P U, Cooke D G, Koch M.Terahertz spectroscopy and imaging-modern techniques and applications[J].Laser Photon. Rev., 2011, 5:124-166 [2]Hangyo M, Tani M, Nagashima T.Terahertz time-domain spectroscopy of solids: a review[J].Int. J. Infrared Millim. Waves, 2005, 26:1661-1690 [3]Tonouchi M.Cutting-edge terahertz technology[J].Nat. Photonics, 2007, 1:97-105 [4]Zalden P, Song L W, Wu X J, et al.Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation[J].Nat. Commun., 2018, 9:2142- [5]Zhao H, Tan Y, Zhang L L, et al.Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence[J]. Light Sci. Appl., 2020, 9:136- [6]Tan Y, Zhao H, Zhang R, et al.Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy [J]. Adv. Photon., 2021, 3: 015002. [7]Tcypkin A, Zhukova M, Melnik M, et al.Giant third-order nonlinear response of liquids at terahertz frequencies [J]. Phys. Rev. Appl., 2021, 15: 054009. [8]Fitzgerald A J, Berry E, Zinov' ev N N, et al.Catalogue of human tissue optical properties at terahertz frequencies[J].J. Biological Phys., 2003, 29(2-3):123-128 [9]Oh S J, Kim S, Ji Y B, et al.Study of freshly excised brain tissues using terahertz imaging[J].Opt. Express, 2014, 5(8):2837-2842 [10]Joseph C S, Yaroslavsky A N, Neel V A, et al.Continuous wave terahertz transmission imaging of nonmelanoma skin cancers[J].Laser Surg. Med., 2011, 43(6):457-462 [11]Cheon H, Yang H J, Li S H, et al.Terahertz molecular resonance of cancer DNA [J]. Sci. Reports, 2016, 6: 37103. [12]Melinger J S, Harsha S S, Laman N, et al.Temperature dependent characterization of terahertz vibrations of explosives and related threat materials[J].Opt. Express, 2010, 18(26):27238-27250 [13]Ergün S, S?nmez S.Terahertz technology for military applications[J].J. Military & Inform. Sci., 2015, 3(1):13-16 [14]Palka N, Szala M, Czerwinska E.Characterization of prospective explosive materials using terahertz time-domain spectroscopy[J].Appl. Opt., 2016, 55(17):4575-4583 [15]Nagatsuma, Tadao, Ducournau, et al.Advances in terahertz communications accelerated by photonics[J].Nat. Photonics, 2016, 10(6):371- [16]Kleine-Ostmann T, Nagatsuma T.A review on terahertz communications research [J]. J. Infrared Millim. Terahertz Waves, 2011, 32: 143-171. [17]Federici J, Moeller L.Review of terahertz and subterahertz wireless communications[J].J. Appl. Phys., 2010, 107(11):6- [18]Dai J M, Liu J L, Zhang X C.Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma [J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17: 183-190. [19]Fül?p J A, Tzortzakis S, Kampfrath T.Laser-driven strong-field terahertz sources [J]. Adv. Opt. Mater., 2020, 8: 1900681. [20]Lee Y S, Principles of Terahertz Science and Technology (Springer, 2009). [21]Bartel T, Gaal P, Reimann K, et al.Generation of single-cycle THz transients with high electric-field amplitudes[J].Opt. Lett., 2005, 30(20):2805-2807 [22]Karpowicz N, Dai J M, Lu X F, et al.Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”[J].Appl. Phys. Lett., 2008, 92(1):011131- [23]Ronne C, Thrane L, ?strand P O, et al.Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation[J].J. Chem. Phys., 1997, 107(14):5319-5331 [24]Hale G M, Querry M R.Optical constants of water in the 200-nm to 200-μm wavelength region [J]. Appl. Opt., 1973, 12: 555-563. [25]Jin Q, E Y W, Williams K, et al.Observation of broadband terahertz wave generation from liquid water [J]. Appl. Phys. Lett., 2017, 111: 071103. [26]Dey I, Jana K, Fedorov V Y, et al.Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids [J]. Nat. Commun., 2017, 8: 1184. [27]Schnebelin C, Cassagne C, de Araújo C B, et al.Measurements of the third- and fifth-order optical nonlinearities of water at 532 and 1064??nm using the D4σ method[J].Optics Lett., 2014, 39(17):5046-5049 [28]Tcypkin A N, Melnik M V, Zhukova M O, et al.High Kerr nonlinearity of water in THz spectral range[J].Opt. Express, 2019, 27(8):10419-10425 [29]Williams F, Varma S, Hillenius S.Liquid water as a lone-pair amorphous semiconductor[J].J. Chem. Phys., 1976, 64(4):1549-1554 [30]Nikogosyan D N, Oraevsky A A, Rupasov V I.Twophoton ionization and dissociation of liquid water by powerful laser UV radiation[J].Chem. Phys., 1983, 77(1):131-143 [31]Crowell R A, Bartels D M.Multiphoton ionization of liquid water with 30-5.0 eV photons[J].J. Chem. Phys., 1996, 100(45):17940-17949 [32]Schneider A, Neis M, Stillhart M, et al.Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment [J]. J. Opt. Soc. Am. B, 2006, 23: 1822-1835. [33]Horiuchi N.Terahertz surprises[J].Nat. Photonics, 2018, 12(3):128-130 [34]Li M, Li Z, Nan J, et al.THz generation from water wedge excited by dual-color pulse [J]. Chin. Opt. Lett., 2020, 18: 073201. [35]Jin Q, E Y W, Gao S, et al.Preference of subpicosecond laser pulses for terahertz wave generation from liquids [J]. Adv. Photonics, 2020, 2: 015001. [36]Feng S J, Dong L Q, Wu T, et al.Terahertz wave emission from water lines [J]. Chin. Opt. Lett., 2020, 18: 023202. [37]Zhang L L, Wang W M, Wu T, et al.Strong terahertz radiation from a liquid-water line [J]. Phys. Rev. Appl., 2019, 12: 014005. [38]Chen Y, He Y, Zhang Y, et al.Systematic investigation of terahertz wave generation from liquid water lines [J]. Opt. Express, 2021, 29: 20477-20486. [39]Solyankin P M, Lakatosh B V, Krivokorytov M S, et al.Single free-falling droplet of liquid metal as a source of directional terahertz radiation [J]. Phys. Rev. Appl., 2020, 14: 034033. [40]Ismagilov A O, Ponomareva E A, Zhukova M O, et al.Liquid jet-based broadband terahertz radiation source [J]. Opt. Eng., 2021, 60: 082009. [41]E Y W, Zhang L L, Tcypkin A, et al.Broadband THz sources from gases to liquids [J]. Ultrafast Sci., 2021, 1: 9892763. [42]E Y W, Cao Y, Ling F, et al.Flowing cryogenic liquid target for terahertz wave generation [J]. AIP Adv., 2020, 10: 105119. [43]Balakin A V, Coutaz J L, Makarov V A, et al.Terahertz wave generation from liquid nitrogen[J].Photonics Res., 2019, 7(6):678-686 [44]Jin Q, Dai J M, E Y W, et al.Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields[J].Appl. Phys. Lett., 2018, 113(26):261101- [45]Watanabe A, Saito H, Ishida Y, et al.A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers [J]. Opt. Commun., 1989, 71: 301-304. [46]Taylor G.Formation of thin flat sheets of water [J]. Proc. R. Soc. London A, 1961, 259: 1-17. [47]Wang T, Klarskov P, Jepsen P U.Ultrabroadband THz time-domain spectroscopy of a free-flowing water film[J].IEEE Trans. Terahertz Sci. Technol., 2014, 4(4):425- [48]Hale G M, Querry M R.Optical constants of water in the 200-nm to 200-μm wavelength region[J].Appl. Opt., 1973, 12(3):555-563 [49]Kennedy P K, Hammer D X, Rockwell B A.Laser-induced breakdown in aqueous media[J].Prog. Quantum Electron., 1997, 21(3):155- [50]Hamster H, Sullivan A, Gordon S, et al.Subpicosecond,electromagnetic pulses from intense laser-plasma interaction[J].Phys. Rev. Lett., 1993, 71(17):2725- [51]Hamster H, Sullivan A, Gordon S, et al.Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J].Phys. Rev. E, 1994, 49(1):671- [52]E Y W, Jin Q, Tcypkin A, et al.Terahertz wave generation from liquid water films via laser-induced breakdown[J].Appl. Phys. Lett., 2018, 113(18):181103- [53]Buccheri F, Zhang X C.Terahertz emission from laser-induced microplasma in ambient air [J]. Optica, 2015, 2(4), 366. [54]Stumpf S, Ponomareva E, Tcypkin A, et al.Temporal field and frequency spectrum of intense femtosecond radiation dynamics in the process of plasma formation in a dielectric medium[J].Laser Phys., 2019, 29(12):124014- [55]Ponomareva E A, Stumpf S A, Tcypkin A N, et al.Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation [J]. Opt. Lett., 2019, 44(22), 5485-5488. [56]Kraus A D, Welty J R, Aziz A.Introduction to Thermal and Fluid Engineering (CRC Press, 2011). [57]Cook D J, Hochstrasser R M.Intense terahertz pulses by four-wave rectification in air [J]. Opt. Lett., 2000, 25: 1210. [58]Kress M, Loffler T, Eden S, et al.Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves [J]. Opt. Lett., 2004, 29: 1120. [59]Flettner A, Pfeifer T, Walter D, et al.High-harmonic generation and plasma radiation from water microdroplets[J].Appl. Phys. B, 2003, 77(8):747-751 [60]Kandidov V P, Kosareva O G, Golubtsov I S, et al.Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)[J].Appl. Phys. B-Lasers Opt., 2003, 77(2-3):149-165 [61]Tcypkin A N, Ponomareva E A, Putilin S E, et al.Flat liquid jet as a highly efficient source of terahertz radiation[J].Opt. Express, 2019, 27(11):15485-15494 [62]Anand M, Kahaly S, Kumar G R, et al.Enhanced hard x-ray emission from microdroplet preplasma [J]. Appl. Phys. Lett., 2006, 88: 181111. [63]Vinokhodov A, Krivokorytov M, Sidelnikov Y, et al.Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source [J]. Rev. Sci. Instrum., 2016, 87: 103304. [64]Solyankin P M, Lakatosh B V, Krivokorytov M S, et al.Single free-falling droplet of liquid metal as a source of directional terahertz radiation [J]. Phys. Rev. Appl., 2020, 14: 034033. [65]Kim K Y, Glownia J H, Taylor A J, et al.Terahertz emission from ultrafast ionizing air in symmetrybroken laser fields[J].Opt. Express, 2007, 15(8):4577-4584 [66]Chin S L.Femtosecond Laser Filamentation (Springer, 2010). [67]Berglund M, Rymell L, Hertz H M.Ultraviolet prepulse for enhanced x-ray emission and brightness from droplettarget laser plasmas[J].Appl. Phys. Lett., 1996, 69(12):1683-1685 [68]Anand M, Kahaly S, Kumar G R, et al.Enhanced hard x-ray emission from microdroplet preplasma[J].Appl. Phys. Lett., 2006, 88(18):181111- [69]Ponomareva E A, Tcypkin A N, Smirnov S V, et al.Double-pump technique-one step closer towards efficient liquidbased THz sources[J].Opt. Express, 2019, 27(22):32855- [70]Ponomareva E A, Ismagilov A O, Putilin S E, et al.Varying pre-plasma properties to boost terahertz wave generation in liquids[J].Commun. Phys., 2021, 4(1):4- [71]Huang H H, Nagashima T, Hsu W H, et al.Dual THz wave and X-ray generation from a water film under femtosecond laser excitation[J].Nanomaterials (Basel, Switzerland), 2018, 8(7):523- [72]E Y W, Jin Q, Zhang X C.Enhancement of terahertz emission by a preformed plasma in liquid water[J].Appl. Phys. Lett., 2019, 115(10):101101- [73]Samios J, Mittag U, Dorfmüller T.The far infrared absorption spectrum of liquid nitrogen [J]. Mol. Phys., 1985, 56: 541-556. [74]Cao Y, E Y W, Huang P, et al.Broadband terahertz wave emission from liquid metal [J]. Appl. Phys. Lett., 2020, 117: 4. [75]Snyder L R.Classification of the solvent properties of common liquids[J].J. Chromatogr. A, 1974, 92(2):223-230 |
[1] | QIAN Longlong, SHEN Yong, LIU Qu, ZOU Hongxin. All-solid-state watt-level 388 nm continuous-wave ultraviolet laser [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 392-399. |
[2] | WANG Zecheng , YANG Zhongming ∗ , ZHANG Xingyu , FAN Shuzhen , CHEN Xiaohan , CONG Zhenhua , LIU Zhaojun , QIN Zengguang , MING Na , GUO Quanxin , GUO Liyuan . Research progress of terahertz parametric sources [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 141-163. |
[3] | DONG Qinlu, HAN Yiping ∗ , ZHANG Qifan. Transmission characteristics of terahertz waves in a hypersonic target plasma sheath [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 258-266. |
[4] | RUAN Zhiqiang, ZHANG Lei, ZHAO Xinyu, JIANG Xingfang ∗. Analysis of negative dispersion characteristics of a novel circular doped photonic crystal fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 133-138. |
[5] | CHEN Rongquan ∗ , CHEN Yuanfu , WANG Qing , WU Zhigang . Propagation properties of off-axis multi-vortex-Gaussian beams in negative refractive index media [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 795-805. |
[6] | WANG Xinghua, CHEN Rongquan∗, WANG Qing. Complex variable Hermite-Gaussian spatial solitons of different orders in strong nonlocal media [J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 459-466. |
[7] | WANG Huacai, CAO Han, YU Hongguan, CHEN Peng, HU Wei ∗. Optical vortex generator based on photopatterned liquid crystal fork gratings [J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 120-126. |
[8] | WANG Ying, LIU Xiaofeng, REN Panpan, LI Shuang, DOU Zhenguo, MEN Zhiwei ∗. Resonance enhanced stimulated Raman scattering of O-H stretching vibration in water molecule [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 774-779. |
[9] | QIAN Jiali, HUANG Xiaodong, LIU Ke, DENG Lunhua∗. Infrared absorption spectra of methane/nitrogen glow discharge products [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 677-683. |
[10] | WANG Xiaoyang∗, LIU Lijuan . KBe2BO3F2 Crystal and All-solid-state Deep Ultraviolet Laser [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 131-147. |
[11] | SHAN Pai, WANG Zujian, SU Rongbing, , HE Chao, YANG Xiaoming, LONG Xifa, . Research progress of quasi-phase matching deep-ultraviolet nonlinear optical crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 180-184. |
[12] | LI Zhuang, LI Chunxiao, YAO Jiyong, ∗, WU Yicheng, . Research progress of BaGa4Se7 and BaGa2GeSe6 crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 185-191. |
[13] | WANG Jinli, ZHONG Chunxiao, REN Ximei, LI Rong. Propagation characteristics of incoherently coupled beams in low loss media [J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 10-16. |
[14] | TENG Hao, LU Xin, SHEN Zhongwei, CHEN Shiyou, CHEN Rongyi, WEI Wenshou, WEI Zhiyi. Properties of long plasma-channel generated by TW femtosecond laser in natural environmental air [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 513-523. |
[15] | Quan Xian-Fu1,2,Zhang Shuo3 and Zhang Jian-Qi1,2*. Ramsey Interferometer based on stimulated Brillouin scattering [J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 206-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||