| [1]Wang X C, Dai F Z, Li S K, et al. Integrated circuits and lithography machines [M] Beijing: Science Press, 2020: 40-60(in Chinese).
王向朝, 戴凤钊, 李思坤, 等. 集成电路与光刻机[M]. 北京: 科学出版社, 2020: 40-60.
[2]Zhou H, Yang H F. The research status and prospects of photolithography and micro/nano manufacturing technology[J]. Microelectronics and Nanoelectronics Technology, 2012, 49 (9): 613-618(in Chinese).
周辉, 杨海峰. 光刻与微纳制造技术的研究现状及展望[J]. 微纳电子技术, 2012, 49(9): 613-618.
[3]Cao Y T, Wang X C, Qiu Z C, et al. Research on Simplified Diffraction Model of Extreme Ultraviolet Projection Lithography Mask [J] Journal of Optics, 2011, 31: 0405001(in Chinese).
曹宇婷, 王向朝, 邱自成, 等. 极紫外投影光刻掩模衍射简化模型的研究[J]. 光学学报, 2011, 31: 0405001.
[4]Cho W, Price D, Morgan P, et al. Classification and printability of EUV mask defects from SEM images[J]. Proc. SPIE, 2017, 10450(6): 28-35.
[5]Yu B, Li C, Jin C S. Measurement of diffusion coefficients of Mo/Si multilayer films based on grazing incidence X-ray reflection spectra [J] China Laser, 2011, 38: 1107002(in Chinese).
喻波, 李春, 金春水. 基于掠入射X射线反射谱的Mo/Si多层膜扩散系数测量[J]. 中国激光, 2011, 38: 1107002.
[6]Schiavone P, Granet G, Robic J Y. Rigorous electromagnetic simulation of EUV masks: influence of the absorber properties[J]. Microelectronic Engineering, 2001, 57-58: 497-503.
[7]Bakshi V. EUV Lithography, Second Edition[M]. America: SPIE, 2018: 32-54.
[8]Zhang H. Research on modeling and defect compensation technology for three-dimensional extreme ultraviolet lithography masks [M]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2019: 56-70(in Chinese).
张恒. 三维极紫外光刻掩模建模及缺陷补偿技术研究[M]. 上海: 中国科学院上海光学精密机械研究所, 2019: 56-70.
[9]Wood O, Koay C, Petrillo K, et al. Integration of EUV lithography in the fabrication of 22-nm node devices[J]. Proc. SPIE, 2009, 7271: 727104.
[10]Jonckheere R. Overcoming EUV mask blank defects: what we can, and what we should[J]. Proceedings of SPIE, 2017, 10454: 104540M.
[11]Wood O R. EUVL: challenges to manufacturing insertion[J]. Journal of Photopolymer Science and Technology, 2017, 30(5): 599-604. DOI: 10.2494/photopolymer.30.599.
[12]Negishi Y, Fujita Y, Seki K, et al. Using pattern shift to avoid blank defects during EUVL mask fabrication[J]. Proc. SPIE, 2013, 8701: 870112.
[13]Kagalwalla A, Gupta P. Comprehensive Defect Avoidance Framework for Mitigating EUV Mask Defects[J]. Proc. SPIE, 2014, 9048: 90480U.
[14]Liu X L, Li S K, Wang X C . A Simplified Simulation Model for Diffraction Spectra of Defective Multilayer Films in Extreme Ultraviolet Lithography [J]. Journal of Optics, 2014, 34: 0905002(in Chinese).
刘晓雷, 李思坤, 王向朝. 极紫外光刻含缺陷多层膜衍射谱仿真简化模型[J]. 光学学报, 2014, 34: 0905002.
[15]McIntyre G, Koay C-s, Burkhardt M, et al. Modeling and experiments of non-telecentric thick mask effects for EUV lithography[J]. Proc. SPIE, 2009, 7271: 72711C.
[16]Erdmann A , Evanschitzky P. Rigorous electromagnetic field mask modeling and related lithographic effects in the low k1 and ultrahigh numerical aperture regime[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2007, 6(3): 031002.
[17]Burger S, Lin Z, Schmidt F, et al. Benchmark of Rigorous Methods for Electromagnetic Field Simulations[J]. Proc. SPIE, 2008, 7122, 71221S.
[18]Erdmann A, Evanschitzky P, Citarella G, et al. Rigorous mask modeling using waveguide and FDTD methods: an assessment for typical hyper-NA imaging problems[J]. Proc. SPIE, 2006, 6283: 628319.
[19]Burger S, Martin P M, Naber R J, et al. Rigorous Simulation of 3D Masks[J]. Proc. SPIE, 2006, 6349: 63494Z.
[20]Evanschitzky P, Erdmann A. Fast near field simulation of optical and EUV masks using the waveguide method[J]. Proc. SPIE, 2007, 6533: 65330Y.
[21]Azpiroz J T, Burr G W, Rosenbluth A E, et al. Massively-parallel FDTD simulations to address mask electromagnetic effects in hyper-NA immersion lithography[J]. Proc. SPIE, 2008, 6924: 69240Y.
[22]Yan Q L, Deng Z J, Shiely J. Fast synthesis of topographic mask effects based on rigorous solutions[J]. Proc. SPIE,2007, 6730: 67302N.
[23]Lee S G, Lee K I, Lee J U, et al. More stable algorithm for rigorous coupled wave analysis applied to topography simulation in optical lithography and its numerical implementation[J]. Proc. SPIE, 1996, 2726: 288–298.
[24]Ma X, Arce G R. Binary mask optimization for forward lithography based on the boundary layer model in coherent systems: erratum[J]. Journal of the Optical Society of America A, 2010, 27(7): 82–84.
[25]Tirapu-Azpiroz J, Burchard P, Yablonovitch E. Boundary layer model to account for thick mask effects in PhotoLithography[J]. Proc. SPIE, 2003, 5040: 1611–1619.
[26]Ma X, Arce G R, Li Y Q. Optimal 3D phase-shifting masks in partially coherent illumination[J]. Applied Optics, 2011, 50(28): 5567–5576.
[27]AdAm K, Neureuther A R. Methodology for accurate and rapid simulation of large arbitrary 2D layouts of advanced photomasks[J]. Proc. SPIE, 2002, 4562: 1051–1067.
[28]Liu P. Accurate prediction of 3D mask topography induced best focus variation in full-chip photolithography applications[J]. Proc. SPIE, 2011, 8166: 816640.
[29]Zhang H B, Yan Q L, Croffie E, et al. An accurate ILT-enabling fullchip mask 3D model for all-angle patterns[J]. Proc. SPIE,2013, 8880: 88800G.
[30]Zhang H B, Yan Q L, Zhang L, et al. Eficient full-chip mask 3D model for Off-Axis Illumination[J]. Proc.SPIE, 2013, 8880: 888023.
[31]Liu P, Xie X B, Liu W, et al. Fast 3D thick mask model for full-chip EUVL simulations[J]. Proc. SPIE, 2013, 8679: 86790W.
[32]Liu P X, Cao Y, Chen L Q, et al. Fast and accurate 3D mask model for full-chip OPC and verification[J]. Proc. SPIE,2007, 6520: 65200R.
[33]Liu P, Naber R J, Kawahira H, et al. Validation of a fast and accurate 3D mask model for SRAF printability analysis at 32 nm node[J]. Proc. SPIE,2007, 6730: 67301R.
[34]Cao Y T, Wang X Z, Erdmann A, et al. Analytical model for EUV mask diffraction field calculation[J]. Proc. SPIE, 2011, 8171: 81710N.
[35]Liu X L, Wang X Z, Li S K, et al. Fast rigorous model for mask spectrum simulation and analysis of mask shadowing effects in EUV lithography[J]. Proc. SPIE, 2014, 9048: 90483E.
[36]Liu X L, Wang X Z, Li S K, et al. Fast model for mask spectrum simulation and analysis of mask shadowing effects in extreme ultraviolet lithography[J]. J. Micro/Nanolith. MEMS MOEMS, 2014, 13(3): 033007.
[37]Gordon R, Mack C A. Lithography simulation employing rigorous solutions to Maxwell’s equations[J]. Proc. SPIE, 1998, 3334: 176–196.
[38]Li Guannan, Liu Lituo, Zhou Wei, et al. Research on the Disturbance of Defects on the Reflection Field of Multilayer Structures with Extreme Ultraviolet Masks[J]. Semiconductor Optoelectronics, 2020, 41 (02): 217-222(in Chinese).
李冠楠, 刘立拓, 周维, 等. 缺陷对极紫外掩模多层结构反射场的扰动研究[J]. 半导体光电, 2020, 41(02): 217-222.
[39]Ossiander M, Meretska M L, Hampel H H, et al. Extreme ultraviolet metalens by vacuum guiding[J]. Science, 2023, 380(6640): 59-63.
[40]Ge D B, Yan Y B. Finite difference time-domain method for electromagnetic waves[M]. Xi'an: Xi'an University of Electronic Science and Technology Press, 2002: 56-63(in Chinese).
葛德彪, 闫玉波. 电磁波时域有限差分方法[M ]. 西安: 西安电子科技大学出版社, 2002: 56-63.
[41]Moharam M G, Gaylord T K. Coupled-wave analysis of reflection gratings[J]. Appl. Opt., 1981, 20(2): 240-244.
[42]Li L F, Haggans C W. Convergence of the coupled-wave method for metallic lamellar diffraction gratings[J]. J. Opt. Soc. Am., 1993, 10(6): 1184-1189.
[43]Huang Xiaoyan Calculation of 3D lithography model based on RCWA [D] Guangdong: Guangdong University of Technology,January 3, 2020: 1-3(in Chinese).
黄小燕. 基于RCWA的光刻三维模型计算[D]. 广东: 广东工业大学, 2020:1-3.
[44]Evanschitzky P, Shao Feng, Erdmann A, et al. Simulation of larger mask areas using the waveguide method with fast decomposition technique[J]. Proc. SPIE, 2007, 6730: 67301P.
[45]Adam K, Neureuther A R. Simplified models for edge transitions in rigorous mask modeling[J]. Proc. SPIE,2001, 4346: 331-344.
[46]Layet B, Taghizadeh M R. Analysis of gratings with large periods and small feature sizes by stitching of the electromagnetic field[J]. Optics Letters, 1996, 21(18): 1508-1510.
[47]Liu X L, Wang X C, Li S K. A simulation model of multi-layered mask films with defects in extreme ultraviolet lithography based on the equivalent film layer method[J]. Journal of Optics, 2015, 35 (8): 1-9(in Chinese).
刘晓雷, 王向朝, 李思坤. 基于等效膜层法的极紫外光刻含缺陷掩模多层膜仿真模型[J]. 光学学报, 2015, 35(8): 1-9.
[48]Cheng W, Li S K, Zhang Z N, et al. Research on Defect Detection and Compensation Technology for Extreme Ultraviolet Lithography Masks[J]. Progress in Laser and Optoelectronics, 2022, 59 (9): 1-14(in Chinese).
成维, 李思坤, 张子南, 等. 极紫外光刻掩模缺陷检测与补偿技术研究[J]. 激光与光电子学进展, 2022, 59(9): 1-14.
[49]Zhang H, Li S K, Wang X C. A fast simulation method for diffraction spectra of extreme ultraviolet lithography masks based on improved structural decomposition[J]. Journal of Optics, 2018, 38: 0105001(in Chinese).
张恒, 李思坤, 王向朝. 基于改进型结构分解的极紫外光刻掩模衍射谱快速仿真方法[J]. 光学学报, 2018, 38: 0105001.
[50]Evanschitzky P, Erdmann A, Besacier M, et al. Simulation of extreme ultraviolet masks with defective multilayers.[C]//Photomask and Next-Generation Lithography Mask Technology X, 2003: 1035-1045.
[51]Zhang H , Li S K, Wang X C. A fast simulation method for extreme ultraviolet lithography 3D masks based on variable separation decomposition method[J]. Journal of Optics, 2017, 37 (5): 1-9(in Chinese).
张恒, 李思坤, 王向朝. 基于变量分离分解法的极紫外光刻三维掩模快速仿真方法[J]. 光学学报, 2017, 37(5): 1-9.
[52]Lan S, Liu J, Wang Y M, et al. Deep learning assisted fast mask optimization[J]. Proc. SPIE, 2018, 10587(17).
[53]Liu P. Mask synthesis using machine learning software and hardware platforms[J]. Proc. SPIE, 2020, 11327(5).
[54]Pearman R, Meyer M, Ungar J, et al. Fast all-angle mask 3D ILT patterning[J]. Proc.SPIE, 2020, 11327(12).
[55]Tanabe H, Sato S, Takahashi A. Fast EUV lithography simulation using convolutional neural network[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 2021, 20(4): 041202.
[56]Lucas K D, Tanabe H, Strojwas A J. Efficient and rigorous three-dimensional model for optical lithography simulation[J]. Journal of the Optical Society of America A, 1996, 13(11), 2187-2199.
[57]Lin Jiaxin, Dong Lisong, Fan Taian. Fast extreme ultraviolet lithography mask near-field calculation method based on machine learning[J]. Applied Optics, 2020, 59(9): 2829-2838.
[58]Storey B D. Computing Fourier Series and Power Spectrum with MATLAB[Z]. Britain: The university of Warwick, 2002.
[59]Abuelma’atti M T. A simple algorithm for fitting measured data to Fourier series models[J]. Integr. Education, 1993, 24(1): 107–112.
[60]Lin J X, Dong L S, Fan Taian, et al. Fast mask near-field calculation using fully convolution network[C]//International Workshop on Advanced Patterning Solutions (IWAPS). 2020: 1-4.
[61]Long J, Shellhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Conference on Computer Vision and Pattern Recognition. 2015: 3431–3440.
[62]Lin J X, Dong L S, Fan Taian, et al. Fast aerial image model for EUV lithography using the adjoint fully convolutional network[J]. Optics Express, 2022, 30(7): 11944-11958.
[63]Li Z Q, Dong L S, Jing X Y, et al. High-precision lithography thick-mask model based on a decomposition machine learning method[J]. Optics Express, 2022, 30(1): 17680-17697.
[64]Abbe E. Beitr?ge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 1873, 9(1): 413-468.
[65]Hopkins H H. On the diffraction theory of optical images[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1953, 217(1130): 408-432.
[66]Melvin L S. Optical and EUV lithography: a modeling perspective[J]. Advanced Optical Technologies, 2021, 10(5): 85-86.
[67]Azpiroz J T. Analysis and modeling of photomask near-fields in sub-wavelength deep ultraviolet lithography with optical proximity corrections[D]. America: University of California, 2004: 35-42.
[68]Levinson H. Principles of lithography, Fourth Edition[M ]. America: SPIE, 2019: 237-240.
[69]Zhu B E. Research on Wave Aberration Detection Technology for Projection Objective Lens of Immersion Lithography Machine[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2018: 95-130(in Chinese).
诸波尔. 浸没式光刻机投影物镜波像差检测技术研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2018: 95-130.
[70]Hopkins H, Thomson G P. The concept of partial coherence in optics[J]. Proceeding of the Royal Society of London, 1997, 208(1093): 263- 277.
[71]Gordon L R. Exact computation of scalar 2D aerial imagery[J]. Proc. SPIE, 2002, 4692.
[72]Cobb N, Zakhor A. Fast Sparse Aerial Image Calculation for OPC[J]. Proc. SPIE, 1995, 2621: 534.
[73]Adam K, Granik Y, Torres A, et al. Improved modeling performance with an adapted vectorial formulation of the Hopkins imaging equation[J]. Proceedings of SPIE, 2003, 5040: 78-91.
[74]Yamazoe K. Fast fine-pixel aerial image calculation in partially coherent imaging by matrix representation of modified Hopkins equation[J]. Applied Optics, 2010, 49(20): 3909-3915.
[75]Liu S Y, Liu W, Zhou T T. Fast algorithm for quadratic aberration model in optical lithography based on cross triple correlation[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2011, 10(2): 023007.
[76]Ma X, Arce G. Binary mask optimization for inverse lithography with partially coherent illumination[J]. Journal of the Optical Society of America A, 2008, 25(12): 2960-2970.
[77]Saleh B E A, Rabbani M. Simulation of partially coherent imagery in the space and frequency domains and by modal expansion. Applied Optics, 1982, 21(15): 2770–2777.
[78]Cobb N B. Fast optical and process proximity correction algorithms for integrated circuit manufacturing[D]. America: University of California at Berkeley, 1998: 78-103.
[79]Ma X, Arce G R. PSM design for inverse lithography with partially coherent illu- mination[J]. Optics Express, 2008, 16(24): 20126–20141.
[80]Xu M, Gonzalo R. Computational Lithography[M]. Canada: John Wiley & Sons, 2010.
[81]Gong P , Liu S Y, Lv W, et al. Fast aerial image simulations for partially coherent systems by transmission cross coefficient decomposition with analytical kernels[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2012, 30(6): 06FG03.
[82]Yamazoe K. Computation theory of partially coherent imaging by stacked pupil shift matrix[J]. Journal of the Optical Society of America A, 2008, 25(12): 3111-3119.
[83]Hooker K, Kazarian A, Zhou Xibin, et al. New methodologies for lower-K1 EUV OPC and RET optimization[J]. Proc. SPIE, 2017, 10143: 101431C.
[84]Clifford C H, Chan T T, Neureuther A R. Compensation methods for buried defects in extreme ultraviolet lithography mask[J]. Journal of Vacuum Science & Technology B, 2011, 29(1): 011022.
[85]Pang L L, Clifford C, Hu P, et al. Compensation for EUV multilayer defects within arbitrary layouts by absorber pattern modification[J]. Proc. SPIE, 2011, 7969: 79691E.
[86]Pang L, Hu P, Satake M, et al. EUV multilayer defect compensation (MDC) by absorber pattern modification: from theory to wafer validation[J]. Proc. SPIE, 2011, 8166: 81662E.
[87]Erdmann A, Evanschitzky P, Bretet T, et al. Modeling strategies for EUV mask multilayer defect dispositioning and repair[J]. Proc. SPIE, 2013, 8679: 86790Y.
[88]Erdmann A, Fuehner T, Schnattingeret T, et al. Towards automatic mask and source optimization for optical lithography[J]. Optical Microlithography XVII, 2004, 5377: 646-657.
[89]Zhang H, Li S K, Wang X Z, et al. Optimization of defect compensation for extreme ultraviolet lithography mask by covariancematrix-adaption evolution strategy[J]. J. Micro/Nanolith. MEMS MOEMS, 2018, 17(4): 043505.
[90]Wu R X, Dong L S, Chen R, et al. A Method for Compensating Lithographic Influence of EUV Mask Blank Defects by an Advanced Genetic Algorithm[J]. Proc. SPIE, 2019, 11147: 111471U.
[91]Wu R X, Dong L S, Ma X, et al.Compensation of EUV lithography mask blank defect based on an advanced genetic algorithm[J]. Optics Express, 2021, 29(18): 28872-28885. |