| [1]. 李柳.电磁层析成像技术的研究[D].东北大学,2013.
[2]. 王琦,崔莉莎,汪剑鸣,等.基于电磁层析成像的金属缺陷稀疏成像方法[J].仪器仪表学报,2017,38(09):2291-2298.DOI:10.19650/j.cnki.cjsi.2017.09.025.
WANG Q, CUI L S, WANG J M, et al. Sparse imaging method for metal defects based on electromagnetic tomography[J]. Chinese Journal of Scientific Instrument, 2017,38(09):2291-2298. DOI:10.19650/j.cnki.cjsi.2017.09.025.
[3]. 曾星星,何敏,张健,等.EMT用于金属结构裂纹图像重建的仿真研究[J].电子测量与仪器学报,2020,34(01):186-192.DOI:10.13382/j.jemi.B1902331.92.
ZENG X X, HE M, ZHANG J, et al. Simulation study on EMT image reconstruction of metal structure flaw[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(01): 186-192.
[4]. 崔莉莎.基于电磁层析成像的金属缺陷三维稀疏成像方法研究[D].天津工业大学,2018.
[5]. Huang G, Qian W, Wang J, et al. Image reconstruction based on frequency domain feature extraction for EMT[J]. Measurement Science and Technology, 2021, 32(10): 105404.
[6]. 罗跃.电磁层析技术中重建图像后处理问题研究[D].沈阳师范大学,2024.
[7]. Xiao J, Liu Z, Zhao P, et al. Deep learning image reconstruction simulation for electromagnetic tomography[J]. IEEE Sensors Journal, 2018, 18(8): 3290-3298.
[8]. 李明廷.基于改进U-Net模型的EMT图像重建方法研究[D].天津工业大学,2022.DOI:10.27357/d.cnki.gtgyu.2022.000395.
[9]. Zhang W, Zhu Z, Geng Y. Simultaneous conductivity and permeability reconstructions for electromagnetic tomography using deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11.
[10]. 付妍,董峰,谭超.电磁层析成像系统敏感场激励特性仿真研究[J].中国电机工程学报,2011,31(08):73-79.DOI:10.13334/j.0258-8013.pcsee.2011.08.016.
FU Y, DONG F, TAN C. Simulation study on excitation characteristics of sensitive field in electromagnetic tomography system[J]. Proceedings of the CSEE, 2011, 31(08): 73-79.
[11]. 张苏嘉,苏益凡,周伟,等.碳纤维拉索缺陷的电磁层析成像有限元仿真[J].电子测量技术,2024,47(08):86-92.DOI:10.19651/j.cnki.emt.2415788.
ZHANG S J, SU Y F, ZHOU W, et al. Finite element simulation of electromagnetic tomography for carbon fiber cable defects[J]. Electronic Measurement Technology, 2024, 47(08): 86-92. DOI: 10.19651/j.cnki.emt.2415788.
[12]. 张文彪,郑晓媛.基于多源信息的多参数电磁层析成像方法研究[J].计量学报,2023,44(01):88-94.
ZHANG W B, ZHENG X Y. Research on multi-parameter electromagnetic tomography method based on multi-source information[J]. Acta Metrologica Sinica, 2023, 44(01): 88-94.
[13]. 霍继伟,刘泽,王亚东,等.平面电磁层析成像钢轨探伤[J].中国电机工程学报,2021,41(15):5351-5361.DOI:10.13334/j.0258-8013.pcsee.201252.
HUO J W, LIU Z, WANG Y D, et al. Rail flaw detection using planar electromagnetic tomography[J]. Proceedings of the CSEE, 2021, 41(15): 5351-5361.
[14]. Yang Y, Liu G, Liu J. A Permittivity Imaging Method by Sensitivity Matrix Gradient: Electrical Capacitance Tomography Based on Electromagnetic Momentum[J]. IEEE Sensors Journal, 2024.
[15]. 徐凯,陈广,尹武良,等.基于场量提取法的电磁层析成像系统的灵敏度推算[J].传感技术学报,2011,24(04):543-547.
XU K, CHEN G, YIN W L, et al. Sensitivity Derivation and Calculation of Electromagnetic Tomography (EMT) Sensor Based on Field Value Extraction[J]. Chinese Journal of Sensors and Actuators, 2011, 24(04): 543-547.
[16]. 孟泓辰.金属探伤电磁层析成像图像重建方法研究[D].中国石油大学(北京),2023.DOI:10.27643/d.cnki.gsybu.2023.001017.
[17]. Liu Z, Yang G, He N, et al. Landweber iterative algorithm based on regularization in electromagnetic tomography for multiphase flow measurement[J]. Flow Measurement and Instrumentation, 2012, 27: 53-58.
[18]. Huo J, Liu Z, Wang Y, et al. Fast electromagnetic tomography image reconstruction algorithm based on dimension reduction technique[J]. Sensing and Imaging, 2020, 21: 1-20.
[19]. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[20]. 张立峰,常恩健.基于改进ResNet-18网络的电容层析成像图像重建[J].计量学报,2023,44(09):1402-1408.
ZHANG L F, CHANG E J. Image reconstruction in electrical capacitance tomography based on improved ResNet-18 network[J]. Acta Metrologica Sinica, 2023, 44(09): 1402-1408.
[21]. 项建弘,徐昊.基于深度学习的图像语义分割算法研究[J].计算机应用研究,2020,37(S2):316-317+320.
XIANG J H, XU H. Research on image semantic segmentation algorithm based on deep learning[J]. Application Research of Computers, 2020, 37(S2): 316-317+320. |