量子电子学报 ›› 2026, Vol. 43 ›› Issue (1): 75-87.doi: 10.3969/j.issn.1007-5461.2026.01.006

• 图像与信息处理 • 上一篇    下一篇

基于改进 ResNet-50 算法的 EMT 缺陷成像方法

王晋华 , 王明泉 *, 路宇鹏 , 曹振锋 , 吴志成   

  1. 中北大学信息与通信工程学院, 山西 太原 030051
  • 收稿日期:2025-07-07 修回日期:2025-08-27 出版日期:2026-01-28 发布日期:2026-01-28
  • 通讯作者: E-mail: wmq@nuc.edu.cn E-mail:E-mail: wmq@nuc.edu.cn
  • 作者简介:王晋华 ( 1998 - ), 女, 山西忻州人, 研究生, 主要从事图像处理、电磁层析成像方面的研究。E-mail: 78129807@qq.com
  • 基金资助:
    国家自然科学基金 (61171177), 山西省重点研发计划 (201803D121069), 山西省高等学校科技创新项目 (2020L0624)

EMT defect imaging method based on the improvedResNet‑50 algorithm

WANG Jinhua, WANG Mingquan *, LU Yupeng, CAO Zhenfeng, WU Zhicheng   

  1. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
  • Received:2025-07-07 Revised:2025-08-27 Published:2026-01-28 Online:2026-01-28

摘要: 针对电磁层析成像 (EMT) 在金属缺陷检测中因逆问题不适定性和病态性导致重建图像质量差的问题, 提出一种基于改进ResNet-50算法的EMT缺陷成像方法。首先, 通过对八线圈EMT检测系统进行仿真建模, 然后, 对被测物体施加电磁场并利用传感器阵列获取其周围电磁场分布信息, 来构建训练集并对原始电压数据进行预处理。进而利用深度残差网络的非线性映射能力完成训练集的学习, 并通过测试集来评估训练效果。研究结果表明, 改进的ResNet-50算法相比Tikhonov正则化法、Landweber迭代法、VGG-16算法和改进的ResNet-18算法, 均方根误差分别降低了87.10%、81.63%、57.79%、19.11%, 结构相似性指数分别提升了88.87%、71.82%、16.24%、4.54%, 能精准还原缺陷位置、形状及大小。综合来看, 该改进算法显著提升了图像重建精度、质量与效率, 证实了其在EMT缺陷成像中的优越性。

关键词: 电磁计量, 电磁层析成像, 改进ResNet-50, 缺陷成像, 图像重建

Abstract: Aiming at the problem of poor reconstructed image quality in electromagnetic tomography (EMT) for metal defect detection due to the inverse problem unsuitability and pathology, an EMT defect imaging method based on the improved ResNet-50 algorithm is proposed in this work. Firstly, by simulating and modeling the eight-coil EMT inspection system, and followed by applying an electromagnetic field to the object under test and using sensor arrays to obtain the information of electromagnetic field distribution around it, a training set is constructed and the raw voltage data are preprocessed. And then, the nonlinear mapping ability of the deep residual network is utilized to complete the learning of the training set, and the training effect is evaluated by the test set. The experiments show that the improved ResNet-50 algorithm reduces the root mean square error by 87.10%, 81.63%, 57.79%, and 19.11% respectively, and improves the structural similarity index by 88.87%, 71.82%,16.24%, and 4.54% respectively, compared to Tikhonov regularization algorithm, Landweber iteration algorithm, VGG-16 algorithm, and improved ResNet-18 algorithm, and at the same time, can accurately restore the defect location, shape and size. Overall, the improved method significantly improves the reconstruction accuracy, quality and efficiency, confirming its superiority in EMT defect imaging.

Key words: electromagnetic metrology, electromagnetic tomography, improved ResNet-50, defect imaging, image reconstruction

中图分类号: